期刊文献+
共找到3,305篇文章
< 1 2 166 >
每页显示 20 50 100
Shaking table experimental study of recycled concrete frame-shear wall structures 被引量:8
1
作者 Zhang Jianwei Cao Wanlin +2 位作者 Meng Shaobin Yu Cheng Dong Hongying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期257-267,共11页
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea... In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
下载PDF
Analysis on Construction Quality Control Technology of Reinforced Concrete Shear Wall Structure
2
作者 Ting Zhou 《Frontiers Research of Architecture and Engineering》 2018年第4期117-121,共5页
In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wa... In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises. 展开更多
关键词 reinforced concrete shear wall structure Construction QUALITY Control technology
下载PDF
Nonlinear Behavior of Reinforced Concrete Slit Shear Walls under Seismic Actions *
3
作者 戴航 陈忠范 +1 位作者 关国雄 张佑启 《Journal of Southeast University(English Edition)》 EI CAS 1998年第1期86-92,共7页
A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake exci... A reinforced concrete slit shear wall is a new breed of earthquake resistant structure recently proposed by the authors. In this paper, the seismic responses of the slit shear walls under the shake of earthquake excitation have been dealt with. Based on a simplified structural model, which is shown to have a sufficient accuracy for the real slit shear wall structure, the analysis focuses on the influence of nonlinear behavior of the connecting beams between the slits on the dynamic performance of the whole slit shear wall structure. It has been found that the yielding of connecting beams in a slit shear wall can provide significant improvement in reducing the structural responses, and by choosing an appropriate strength value for the connecting beams, it is possible to optimize the seismic response of the slit shear wall. 展开更多
关键词 seismic response slit shear wall reinforced concrete connecting beam
下载PDF
RC Frame-Prefabricated HPFRCC Energy Wall Structure System Energy Distribution Research
4
作者 Yiting Chen 《World Journal of Engineering and Technology》 2024年第4期1046-1074,共29页
The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthqu... The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system. 展开更多
关键词 reinforced concrete frame Construction HPFRCC Material Assembly Energy Dissipation wall Seismic Performance Hysteresis Energy Dissipation Distribution
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:5
5
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Post-fire cyclic behavior of reinforced concrete shear walls 被引量:5
6
作者 刘桂荣 宋玉普 曲福来 《Journal of Central South University》 SCIE EI CAS 2010年第5期1103-1108,共6页
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc... The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone. 展开更多
关键词 shear wall reinforced concrete post-fire seismic behavior low cyclic loading
下载PDF
Nonlinear Finite Element Analysis of Mechanical Performance of Reinforced Concrete Short-Limb Shear Wall 被引量:1
7
作者 XUELi-min 《Wuhan University Journal of Natural Sciences》 EI CAS 2005年第3期562-565,共4页
On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of crack... On the basis of test, nonlinear finite element analysis of reinforcedconcrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYSprogram in order to understand the evolution of cracking, deformation and failure course of thespecimens. At the same time, the results of numerical calculation are compared with the results oftest. The results indicate that, under monotonic horizontal load the failures of the specimens withflange wall and without flange wall all occur at the intersections of lintel bottom and limb ofwall, the failures also occur at the bottom of limb; the load-displacement curve of wall withoutflange is steeper than that of wall with flange, and the ductility is worse than that of wall withflange; the results, such as cracking, deformation, yield load and so on of finite element analysisagree well with the results of test. These results provide theoretical basis of study andapplication of R. C short-limb shear wall. 展开更多
关键词 reinforced concrete short-limb shear wall mechanical performance finiteelement method NONLINEAR
下载PDF
Performance index limits of high reinforced concrete shear wall components 被引量:1
8
作者 劳晓春 韩小雷 《Journal of Central South University》 SCIE EI CAS 2011年第4期1248-1255,共8页
The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in th... The deformation performance index limits of high reinforced concrete (RC) shear wall components based on Chinese codes were discussed by the nonlinear finite element method. Two typical RC shear wall specimens in the previous work were first used to verify the correctness of the nonlinear finite element method. Then, the nonlinear finite element method was applied to study the deformability of a set of high RC shear wall components designed according to current Chinese codes and with shear span ratio λ≥2.0. Parametric studies were made on the influence of shear span ratio, axial compression ratio, ratio of flexural capacity to shear capacity and main flexural reinforcement ratio of confined botmdary members. Finally, the deformation performance index and its limits of high RC shear wall components under severe earthquakes were proposed by the finite element model results, which offers a reference in determining the performance status of RC shear wall components designed based on Chinese codes. 展开更多
关键词 reinforced concrete shear wall components performance index limits nonlinear finite element method Chinese codes
下载PDF
Experimental studies on behavior of fully grouted reinforced-concrete masonry shear walls 被引量:3
9
作者 Zhao Yan Wang Fenglai 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期743-757,共15页
An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the... An experimental study is conducted on fully grouted reinforced masonry shear walls (RMSWs) made from concrete blocks with a new configuration. Ten RMSWs are tested under reversed cyclic lateral load to investigate the influence of different reinforcements and applied axial stress values on their seismic behavior. The results show that flexural strength increases with the applied axial stress, and shear strength dominated by diagonal cracking increases with both the amount of horizontal reinforcement and applied axial stress. Yield displacement, ductility, and energy dissipation capability can be improved substantially by increasing the amount of horizontal reinforcement. The critical parameters for the walls are derived from the experiment: displacement ductility values corresponding to 15% strength degradation of the walls reach up to 2.6 and 4.5 in the shear and flexure failure modes, respectively; stiffness values of flexure- and shear-dominated walls rapidly degrade to 17%–19% and 48%–57% of initial stiffness at 0.50 D<sub>max</sub> (displacement at peak load). The experiment suggests that RMSWs could be assigned a higher damping ratio (~14%) for collapse prevention design and a lower damping value (~7%) for a fully operational limit state or serviceability limit state. 展开更多
关键词 reinforced-concrete masonry shear wall shear strength DUCTILITY stiffness degradation energy dissipation equivalent viscous damping ratio
下载PDF
Progressive collapse resisting capacity of reinforced concrete load bearing wall structures 被引量:1
10
作者 Alireza Rahai Alireza Shahin Farzad Hatami 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2730-2738,共9页
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu... Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure. 展开更多
关键词 reinforced concrete(RC) load bearing wall structure progressive collapse fiber sections nonlinear analysis load factor method
下载PDF
Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame
11
作者 Vahid Sadeghian Oh-Sung Kwon Frank Vecchio 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期727-743,共17页
This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange f... This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shear- critical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required. 展开更多
关键词 hybrid simulation small-scale testing reinforced concrete structures shear behaviour multi-scale modelling
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
12
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
Study of the seismic response of a recycled aggregate concrete frame structure 被引量:2
13
作者 Wang Changqing Xiao Jianzhuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期669-680,共12页
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ... Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g. 展开更多
关键词 recycled aggregate concrete (RAC) frame structure seismic response shear coefficient dynamicamplification factor
下载PDF
Numerical Modeling Strategy for the Simulation of Nonlinear Response of Slender Reinforced Concrete Structural Walls 被引量:2
14
作者 Mohammed A.Mohammed Andre R.Barbosa 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期583-627,共45页
A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of non... A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls,respectively.A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls.The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel bars embedded in reinforced concrete elements,which are developed based on beam-on-springs model,and validated with experimental tests of boundary elements of structural walls available in the literature.Six experimental case studies of reinforced concrete walls with rectangularshape,T-shape,and U-shape cross-section are used to validate the structural wall numerical modeling strategy. 展开更多
关键词 BAR BUCKLING FINITE ELEMENT modeling low-cycle fatigue reinforced concrete structural walls
下载PDF
Effects of edge beams on mechanic behavior under lateral load in reinforced concrete hollow slab-column structure
15
作者 成洁筠 杨建军 唐小弟 《Journal of Central South University》 SCIE EI CAS 2008年第S1期61-66,共6页
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana... In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained. 展开更多
关键词 reinforced concrete HOLLOW slab-column structure edge beam equivalent frame width COEFFICIENT increasing COEFFICIENT
下载PDF
Effect of Eccentric Shear Stiffness of Walls on Structural Response of RC Frame Buildings
16
作者 Muhammad Umair Saleem 《Open Journal of Civil Engineering》 2017年第4期527-538,共12页
Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design rev... Current research study consists of determining the optimum location of the shear wall to get the maximum structural efficiency of a reinforced concrete frame building. It consists of a detailed analysis and design review of a seven-story reinforced concrete building to understand the effect of shear wall location on the response of reinforced concrete structures when subjected to different earthquake forces. Three trail locations of shear walls are selected and their performance is monitored in terms of structural response under different lateral loads. Required objectives are achieved by obtaining design and construction drawings of an existing reinforced concrete structure and modeling it on Finite Element Method (FEM) based computer software. The structure is redesigned and discussed with four different configurations (one without shear wall and three with shear walls). Main framing components (Beams, Columns and Shear walls) of the superstructure are designed using SAP 2000 V. 19.0 whereas substructure (foundation) of RC building was?designed using SAFE. American Concrete Institute (ACI) design specifications were used to calculate the cracked section stiffness or non-linear geometrical properties of the cracked section. Uniform Building Code (UBC-97) procedures were adopted to calculate the lateral earthquake loading on the structures. Structural response of the building was monitored at each story level for each earthquake force zone described by the UBC-97. The earthquake lateral forces were considered in both X and Y direction of the building. Each configuration of shear wall is carefully analyzed and effect of its location is calibrated by the displacement response of the structure. Eccentricity to the lateral stiffness of the building is imparted by changing the location of shear walls. Results of the study have shown that the location of shear wall significantly affects the lateral response of the structure under earthquake forces. It also motivates to carefully decide the center of lateral stiffness of building prior to deciding the location of shear walls. 展开更多
关键词 reinforced concrete BUILDINGS COMPUTER aided Modelling shear walls Stiff-ness Deformations
下载PDF
In-Plane Shear Performance of Wood-Framed Drywall Sheathing Wall Systems under Cyclic Racking Loading
17
作者 Ali M. Memari Ryan L. Solnosky 《Open Journal of Civil Engineering》 2014年第1期54-70,共17页
A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall)... A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls. 展开更多
关键词 frameS WOOD structures STUDS shear walls GYPSUM LATERAL Loads RESIDENTIAL
下载PDF
Research on Seismic Reliability and Damage of Reinforced Concrete Frame
18
作者 Xin WANG ding LIU 《International Journal of Technology Management》 2015年第5期90-92,共3页
This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, ... This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, combined the method of analytical approximation degree of structure reliability with Performance-Based Seismic Design (PBSD), put forward the analysis method of structural reliability and the performance of the global seismic fragility, are calculated by using the finite element reliability method of structures global seismic fragility. Taking the maximum interlamination relative deformation as indicators of overall performance, we analyze seismic fragility of five storey RC frame structure, rendering the seismic fragility curves corresponding to different performance requirements and different earthquake action. 展开更多
关键词 reinforced concrete frame structure VULNERABILITY RELIABILITY
下载PDF
Experimental testing of RC shear wall seismic retrofit using selective weakening,self-centering and Ultra High performance concrete
19
作者 Sumedh S.harma Sriram Aaleti Pinar Okumus 《Resilient Cities and Structures》 2023年第1期76-90,共15页
Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This pa... Traditional retrofit methods often focus on increasing the structure’s strength,stiffness,or both.This may in-crease seismic demand on the structure and could lead to irreparable damage during a seismic event.This paper presents a retrofit method,integrating concepts of selective weakening and self-centering(rocking)to achieve low seismic damage for non-code compliant reinforced concrete shear walls.The proposed method involves con-verting traditional cast-in-place concrete shear walls into rocking walls,which helps to lower the shear demand,while allowing re-centering.Two large-scale lateral load tests were performed to validate the retrofit concept on a concrete shear wall designed according to pre-1970s standards.The design parameters investigated were amount of energy dissipating reinforcements and confinement enhancement.Two different methods using Ultra High Performance Concrete(UHPC)were investigated to provide additional confinement to boundary elements of older shear walls.Observations from the tests showed minimized damage and enhanced recentering in the retrofitted wall specimens.Use of UHPC in the boundary elements of the retrofitted walls provided additional confinement and reduced damage in the rocking corners. 展开更多
关键词 Seismic retrofit reinforced concrete shear walls Selective weakening SELF-CENTERING Ultra-high performance concrete(UHPC) CONFINEMENT
下载PDF
Structural Analysis of a RC Shear Wall by Use of a Truss Model
20
作者 Panagis G. Papadopoulos Periklis E. Lamprou 《Open Journal of Civil Engineering》 CAS 2022年第3期320-352,共33页
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera... Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall. 展开更多
关键词 reinforced concrete shear wall Structural Analysis Truss Model Iterative Method Computer Program Boundary Columns and Beam Grid of Horizontal and Diagonal Reinforcing Steel Bars
下载PDF
上一页 1 2 166 下一页 到第
使用帮助 返回顶部