期刊文献+
共找到1,815篇文章
< 1 2 91 >
每页显示 20 50 100
Evaluation of the fishbone model in simulating the seismic response of multistory reinforced concrete moment-resisting frames 被引量:4
1
作者 Qu Zhe Gong Ting +1 位作者 Li Qiqi Wang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期315-330,共16页
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulati... The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns. 展开更多
关键词 FISHBONE MODEL reinforced concrete frame strong column-weak beam column-beam stiffness ratio incremental dynamic analysis
下载PDF
Self-centering seismic retrofit scheme for reinforced concrete frame structures:SDOF system study 被引量:5
2
作者 Yunfeng Zhang and Xiaobin Hu Department of Civil and Environmental Engineering,University of Maryland,College Park,MD 20742,USA 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第2期271-283,共13页
This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and min... This paper presents the results of a parametric study of self-centering seismic retrofit schemes for reinforced concrete (RC) frame buildings. The self-centering retrofit system features flag-shaped hysteresis and minimal residual deformation. For comparison purpose,an alternate seismic retrofit scheme that uses a bilinear-hysteresis retrofit system such as buckling-restrained braces (BRB) is also considered in this paper. The parametric study was carried out in a single-degree-of-freedom (SDOF) system framework since a multi-story building structure may be idealized as an equivalent SDOF system and investigation of the performance of this equivalent SDOF system can provide insight into the seismic response of the multi-story building. A peak-oriented hysteresis model which can consider the strength and stiffness degradation is used to describe the hysteretic behavior of RC structures. The parametric study involves two key parameters -the strength ratio and elastic stiffness ratio between the seismic retrofit system and the original RC frame. An ensemble of 172 earthquake ground motion records scaled to the design basis earthquake in California with a probability of exceedance of 10% in 50 years was constructed for the simulation-based parametric study. The effectiveness of the two seismic retrofit schemes considered in this study is evaluated in terms of peak displacement ratio,peak acceleration ratio,energy dissipation demand ratio and residual displacement ratio between the SDOF systems with and without retrofit. It is found from this parametric study that RC structures retrofitted with the self-centering retrofit scheme (SCRS) can achieve a seismic performance level comparable to the bilinear-hysteresis retrofit scheme (BHRS) in terms of peak displacement and energy dissipation demand ratio while having negligible residual displacement after earthquake. 展开更多
关键词 EARTHQUAKE reinforced concrete frame structure nonlinear analysis SDOF system seismic retrofit SELF-CENTERING
下载PDF
Experimental study on the seismic response of braced reinforced concrete frame with irregular columns 被引量:6
3
作者 Xiao Jianzhuang Li Jie Chen Jun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期487-494,共8页
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K... A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China. 展开更多
关键词 seismic response reinforced concrete braced frame irregular columns
下载PDF
Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces 被引量:1
4
作者 Nasim S. Moghaddasi B Zhang Yunfeng Hu Xiaobin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第1期91-105,共15页
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete comp... This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program - OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand. 展开更多
关键词 BRACE composite confined concrete glass-fiber-reinforced polymer frame nonlinear analysis RETROFIT seismic
下载PDF
Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns
5
作者 李忠献 景萌 +1 位作者 郝永昶 康谷贻 《Transactions of Tianjin University》 EI CAS 2005年第6期412-416,共5页
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und... Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one. 展开更多
关键词 reinforced concrete frame seismic behavior split column short column model experiment
下载PDF
Research on Seismic Reliability and Damage of Reinforced Concrete Frame
6
作者 Xin WANG ding LIU 《International Journal of Technology Management》 2015年第5期90-92,共3页
This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, ... This paper first introduces the basic principle of seismic risk analysis, and then put forward the basic concept of structures global seismic fragility, aiming at the existing problems of traditional analysis method, combined the method of analytical approximation degree of structure reliability with Performance-Based Seismic Design (PBSD), put forward the analysis method of structural reliability and the performance of the global seismic fragility, are calculated by using the finite element reliability method of structures global seismic fragility. Taking the maximum interlamination relative deformation as indicators of overall performance, we analyze seismic fragility of five storey RC frame structure, rendering the seismic fragility curves corresponding to different performance requirements and different earthquake action. 展开更多
关键词 reinforced concrete frame structure VULNERABILITY RELIABILITY
下载PDF
Effects of edge beams on mechanic behavior under lateral load in reinforced concrete hollow slab-column structure
7
作者 成洁筠 杨建军 唐小弟 《Journal of Central South University》 SCIE EI CAS 2008年第S1期61-66,共6页
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana... In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained. 展开更多
关键词 reinforced concrete HOLLOW slab-column structure edge beam equivalent frame width COEFFICIENT increasing COEFFICIENT
下载PDF
Optimal seismic design of reinforced concrete structures under timehistory earthquake loads using an intelligent hybrid algorithm
8
作者 Sadjad Gharehbaghi Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期97-109,共13页
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi... A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads. 展开更多
关键词 optimal seismic design reinforced concrete frames earthquake loads particle swarm optimization intelligent regression model support vector machine
下载PDF
Seismic Response of Reinforced Concrete Buildings Retrofitted with Dissipative Steel Braces
9
作者 Luigi Di Samo Gaenato Manfredi 《Journal of Civil Engineering and Architecture》 2010年第2期8-24,共17页
The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. in... The present work discusses the outcomes of recent experimental tests and numerical simulations carried out on full scale reinforced concrete (RC) non-ductile frames retrofitted with dissipative steel braces, i.e. innovative buckling restrained braces (BRBs). Experimental tests were performed on two sample full scale RC framed buildings designed for gravity loads only. Such frames were subjected to cyclic pushovers to investigate their structural performance under different levels of earthquake loadings. The outcomes of the performed experimental tests demonstrate the efficiency and reliability of utilizing BRBs to retrofit non ductile RC frames. These outcomes were confirmed by refined non linear static and response history analyses carried out on an existing RC school framed building designed without seismic details and retrofitted with BRBs similar to those adopted for the tested full-scale frame. In such sample building the BRBs are placed along the perimeter of the existing frames to minimize the interruption of the functionality of the school and for easy of maintenance in the aftermath of major earthquake ground motions. The seismic performance assessment of the retrofitted structural system is illustrated in a detailed manner. Local and global response quantities are presented. The values of the global overstrength Ω for the case study vary between 2.14 and 2.54 for the retrofitted framed building. The translation ductility μ△-values range between 2.07 and 2.36. The response modification factor (or behaviour factor, namely R- or q-factor) is on average equal to 5.0. Additionally, the estimated maximum axial ductility of the BRBs is about 10. Finally, the cost-effectiveness of the adopted retrofitting scheme is emphasized and further needs for the application of BRBs are highlighted. 展开更多
关键词 Seismic retrofitting dissipative braces reinforced concrete frames response analysis earthquakes.
下载PDF
Performance evaluation of low-rise infilled reinforced concrete frames designed by considering local effects on column shear demand
10
作者 Jarun SRECHAI Wongsa WARARUKSAJJA +1 位作者 Sutat LEELATAVIWAT Suchart LIMKATANYU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第5期686-703,共18页
The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength ... The interactions between reinforced concrete(RC)frames and infill walls play an important role in the seismic response of frames,particularly for low-rise frames.Infill walls can increase the overall lateral strength and stiffness of the frame owing to their high strength and stiffness.However,local wall-frame interactions can also lead to increased shear demand in the columns owing to the compressive diagonal strut force from the infill wall,which can result in failure or in serious situations,collapse.In this study,the effectiveness of a design strategy to consider the complex infill wall interaction was investigated.The approach was used to design example RC frames with infill walls in locations with different seismicity levels in Thailand.The performance of these frames was assessed using nonlinear static,and dynamic analyses.The performance of the frames and the failure modes were compared with those of frames designed without considering the infill wall or the local interactions.It was found that even though the overall responses of the buildings designed with and without consideration of the local interaction of the infill walls were similar in terms the overall lateral strength,the failure modes were different.The proposed method can eliminate the column shear failure from the building.Finally,the merits and limitations of this approach are discussed and summarized. 展开更多
关键词 reinforced concrete frames infill wall seismic design method shear failure wall-frame interaction
原文传递
A multi-objective design method for seismic retrofitting of existing reinforced concrete frames using pin-supported rocking walls
11
作者 Yue CHEN Rong XU +1 位作者 Hao WU Tao SHENG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第9期1089-1103,共15页
Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attention... Over the past several decades,a variety of technical ways have been developed in seismic retrofitting of existing reinforced concrete frames(RFs).Among them,pin-supported rocking walls(PWs)have received much attentions to researchers recently.However,it is still a challenge that how to determine the stiffness demand of PWs and assign the value of the drift concentration factor(DCF)for entire systems rationally and efficiently.In this paper,a design method has been exploited for seismic retrofitting of existing RFs using PWs(RF-PWs)via a multi-objective evolutionary algorithm.Then,the method has been investigated and verified through a practical project.Finally,a parametric analysis was executed to exhibit the strengths and working mechanism of the multi-objective design method.To sum up,the findings of this investigation show that the method furnished in this paper is feasible,functional and can provide adequate information for determining the stiffness demand and the value of the DCFfor PWs.Furthermore,it can be applied for the preliminary design of these kinds of structures. 展开更多
关键词 pin-supported rocking wall reinforced concrete frame seismic retrofit stiffness demand drift concentration factor multi-objective design genetic algorithm Pareto optimal solution
原文传递
Influence of the column-to-beam flexural strength ratio on the failure mode of beam-column connections in RC frames 被引量:1
12
作者 Gong Maosheng Zuo Zhanxuan +2 位作者 Sun Jing He Riteng Zhao Yinan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第2期441-452,共12页
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in ... The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes. 展开更多
关键词 strong column-weak beam column-to-beam flexural strength ratio reinforced concrete frame structure beam-column connection failure mode
下载PDF
Seismic design factors for RC special moment resisting frames in Dubai,UAE
13
作者 Mohammad AlHamaydeh Sulayman Abdullah +1 位作者 Ahmed Hamid Abdilwahhab Mustapha 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期495-506,共12页
This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to th... This study investigates the seismic design factors for three reinforced concrete (RC) framed buildings with 4, 16 and 32-stories in Dubai, UAE utilizing nonlinear analysis. The buildings are designed according to the response spectrum procedure defined in the 2009 International Building Code (IBC'09). Two ensembles of ground motion records with 10% and 2% probability of exceedance in 50 years (10/50 and 2/50, respectively) are used. The nonlinear dynamic resPonses to the earthquake records are computed using IDARC-2D. Key seismic design parameters are evaluated; namely, response modification factor (R), deflection amplification factor (Cd), system overstrength factor (Ωo), and response modification factor for ductility (Rd) in addition to inelastic interstory drift. The evaluated seismic design factors are found to significantly depend on the considered ground motion (10/50 versus 2/50). Consequently, resolution to the controversy of Dubai seismicity is urged. The seismic design factors for the 2/50 records show an increase over their counterparts for the 10/50 records in the range of 200%-400%, except for the D~ factor, which shows a mere 30% increase. Based on the observed trends, perioddependent R and Cd factors are recommended if consistent collapse probability (or collapse prevention performance) in moment frames with varying heights is to be expected. 展开更多
关键词 Seismic design factors reinforced concrete special moment resisting frame DUBAI UAE
下载PDF
Experimental investigation of damage behavior of RC frame members including non-seismically designed columns
14
作者 Chen Linzhi,Lu Xilin,Jiang Huanjun and Zheng Jianbo State Key Laboratory of Disaster Reduction in Civil Engineering,Tongji University,Shanghai 200092,China PhD Candidate Professor +1 位作者 Associate Professor Master of Engineering 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第2期301-311,共11页
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz... Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns. 展开更多
关键词 reinforced concrete frame member cyclic test hysteresis behavior damage behavior seismic performance
下载PDF
Seismic Damage to Owner-Built RC Frames in Charikot during the 2015 Nepal Earthquake Sequence
15
作者 Qu Zhe Wang Tao +2 位作者 Lin Xuchuan Zhang Haoyu Yang Yongqiang 《Earthquake Research in China》 CSCD 2018年第4期584-601,共18页
The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these b... The damage to the masonry-infilled reinforced concrete( RC) frame buildings in Charikot,the capital city of Dolakha district in Nepal,during the 2015 April-to-May Nepal earthquake sequence is reported. Most of these buildings were built by the owners with little governmental inspections regarding their structural design or constructional quality. Although they generally performed better than other structural systems such as stone-masonry houses,the RC frames sustained extensive damage ranging from cracking of infill to complete collapse. In particular,eight of the 72 inspected RC frames alongside an uphill street collapsed in different ways. In addition to the un-engineered nature of these RC frames,their collapse could also be attributed to multiple technical reasons including the effect of terrain, the pounding between adjacent buildings and the accumulative damage in the earthquake sequence. 展开更多
关键词 Nepal earthquake reinforced concrete frame MASONRY INFILL SLOPE POUNDING Accumulated damage
下载PDF
Investigation on a mitigation scheme to resist the progressive collapse of reinforced concrete buildings
16
作者 Iman TABAEYE IZADI Abdolrasoul RANJBARAN 《Frontiers of Structural and Civil Engineering》 SCIE EI 2012年第4期421-430,共10页
This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive coll... This study presents the investigation of the approach which was presented by Thaer M.Saeed Alrudaini to provide the alternate load path to redistribute residual loads and preventing from the potential progressive collapse of RC buildings.It was proposed to transfer the residual loads upwards above the failed column of RC buildings by vertical cables hanged at the top to a hat steel braced frame seated on top of the building which in turn redistributes the residual loads to the adjacent columns.In this study a ten-storey regular structural building has been considered to investigate progressive collapse potential.Structural design is based on ACI 318-08 concrete building code for special RC frames and the nonlinear dynamic analysis is carried out using SAP2000 software,following UFC4-023-03 document.Nine independent failure scenarios are adopted in the investigation,including six external removal cases in different floors and three removal cases in the first floor.A new detail is proposed by using barrel and wedge to improve residual forces transfer to the cables after removal of the columns.Simulation results show that progressive collapse of building that resulted from potential failure of columns located in floors can be efficiently resisted by using this method. 展开更多
关键词 prevent progressive collapse alternate load path reinforced concrete buildings nonlinear dynamic retrofitting cable steel hat braced frame barrel and wedge
原文传递
Investigating the Retrofit of RC Frames Using TADAS Yielding Dampers
17
作者 Mehrzad TahamouliRoudsari KCheraghi RAghayari 《Structural Durability & Health Monitoring》 EI 2022年第4期343-359,共17页
TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the str... TADAS dampers are a type of passive structural control system used in the seismic design or retrofitting of structures.These types of dampers are designed so that they would yield before the main components of the structure during earthquake.This dissipates a large portion of the earthquake’s energy and reduces the energy dissipation demand in the main components of the structure.Considering its suitable performance,this damper has been the subject of numerous studies.However,there are still ambiguities regarding the effect of the number of these dampers on the retrofitting of reinforced concrete(RC)frames and their design procedure.In this study,a singlestory,single-bay RC frame with the scale of 1:3,equipped with the TADAS damper,was subjected to hysteresis loading until the drift of 4%.Then,for further assessment,48 calibrated numerical models were constructed in ABAQUS and the effects of the number of TADAS dampers and column axial force upon the stiffness,strength,and ductility of the frame were accurately investigated.Also,a number of formulations were presented to calculate how the stiffness and lateral strength of the retrofitted frame are affected by an increase in the number of the TADAS plates.The results showed that if the shear capacity of the retrofitted frame is three times that of the initial frame,the structure would have the best response.In addition,if the axial force in the columns exceeds 0.2 Pcr the energy dissipation and ductility factor of the frame drastically decrease. 展开更多
关键词 Pushover analysis reinforced concrete frame REHABILITATION TADAS yielding damper
下载PDF
Dynamic Reliability Analysis of Braced Frame Structures Considering Inter Story Correlation
18
作者 Xu-Yang Zhang Ping Hong 《Journal of Mechanics Engineering and Automation》 2020年第4期110-119,共10页
Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumpt... Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower. 展开更多
关键词 reinforced concrete frame BRB dynamic reliability analysis inter story failure correlation
下载PDF
Research on the direct damage-based seismic design method of RC frame structures
19
作者 Lanfang LUO Jing XU 《International Journal of Technology Management》 2013年第2期65-67,共3页
Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction fa... Based on the existing research, this paper presents an innovative methodology to realize direct damage-based seismic design for RC frame structures by mobilizing ESDOF theory and the damage-based strength reduction factor(RD factor). A design example is then followed to verify this method. 展开更多
关键词 reinforced concrete frame structures Direct damage-based seismic design Damage-based inelastic response spectrum
下载PDF
乌兹别克斯坦9度区某超高层建筑结构设计与优化 被引量:1
20
作者 闫锋 花炳灿 安东亚 《建筑结构》 北大核心 2024年第13期51-56,共6页
对于9度设防地区的超高层建筑,其结构设计基本由地震作用控制,因此抗震设计尤为重要。建筑消能减震技术可在提高结构地震安全储备的同时,降低整体工程造价,是结构优化设计的有效措施。对位于9度区的超高层建筑进行了结构方案选型对比、... 对于9度设防地区的超高层建筑,其结构设计基本由地震作用控制,因此抗震设计尤为重要。建筑消能减震技术可在提高结构地震安全储备的同时,降低整体工程造价,是结构优化设计的有效措施。对位于9度区的超高层建筑进行了结构方案选型对比、结构方案优化、减震设计方案比选、剪力墙内嵌钢板优化。结果显示,钢骨混凝土框架⁃核心筒方案相对于钢框架⁃支撑方案具备更高的成本优势;框架⁃核心筒方案可通过精细化设计作进一步优化;在此基础上,对钢骨混凝土框架⁃核心筒方案采用两种消能减震方案进行比选,结果表明,采用黏滞阻尼器方案的结构抗震性能明显优于采用黏滞阻尼墙方案;最后通过增大剪力墙竖向分布钢筋配筋率,对低区核心筒墙肢中的内嵌钢板进行了优化。 展开更多
关键词 9度抗震设防 超高层建筑 钢骨混凝土结构 框架⁃核心筒 消能减震
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部