In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K...A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.展开更多
Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced con...Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced concrete bridge columns in order to develop more advanced and reliable design procedures. To investigate such effects, a 1/4 scaled circular reinforced concrete bridge column specimen was tested under two horizontal and one vertical components of a strong motion that has long duration with several strong pulses. Damage progress of reinforced concrete columns subjected to strong excitation was evaluated from the test. The test results demonstrate that the lateral force response in the principal directions become smaller than computed flexural capacity due to the bilateral flexural loading effects, and that the lateral response is not significantly affected by the fluctuation of the axial force because the horizontal response and axial force barely reached the maximum simultaneously due to difference of the predominant natural periods between the vertical and the horizontal directions. Accuracy of fiber analyses is discussed using the test results.展开更多
Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation....Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.展开更多
A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failur...A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.展开更多
By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitt...By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be mor...In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures.展开更多
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
Fire is an exceptional action that may occur during the life of a building.So,it must be considered when designing a building structure.The standards provide several types of design methods for that propose,used for s...Fire is an exceptional action that may occur during the life of a building.So,it must be considered when designing a building structure.The standards provide several types of design methods for that propose,used for single elements,parts of structure or the structure as a whole.The fire design of columns is important both for new project as for remodel buildings and also for verification of the residual resistance of columns that have suffered a fire accident.In this way,the aim of this work is to analyze numerically different ways of fire exposure to check the compressive strength of the columns when subjected to fire and the influence of the adjacent walls to a column in case of fire.The thermal advanced analysis of the sections columns was performed using the finite element software,Abaqus CAE,where the standard fire curve,ISO 834(International Organization for Standardization 834),was used,with 4 h of fire duration.It was possible,with the two methods used in this work,to compare them to verify which model is more conservative and which is closer to the advanced numerical model,for calculating temperatures in the column section.It was checked that the walls act as thermal insulators,protecting part of the columns from the convection and radiation of the fire.Consequently,the effects of raising the temperature over the compressive resistance of the reinforced concrete column,were reduced.展开更多
The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The ...The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The great stiffness of short columns enables them to absorb large amounts of structural energy. Inattention of some manuals and regulations such as Earthquake regulations to this phenomenon necessitates paying further attention to it. On this basis, the present study employed experimental modeling and numerical modeling for a four-story reinforced concrete building that involves the analysis of simple 2-D frames of varying floor heights and varying number of bays using a very popular software tool STAAD Pro on both a sloping and a flat lot. Also Sap2000 software had been used to show that the displacement of floors is greater for a flat lot building than a sloping lot building. However, the increase in shear was found to be quite greater in short columns compared to common ones and an enormous moment should be tolerated by sloping lot structures. The greater stiffness of the structure was also revealed by non-linear static (Push-Over) analysis. According to the results, short column are required to have more resistant sections and are suggested to be reinforced with more bars. In addition, more steel should be used as stirrups than as longitudinal bars. Also for existing structures, shear capacity of short columns should be retrofitted by FRP, Steel Jacket or other materials.展开更多
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. ...The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulati...The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.展开更多
In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordina...In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.展开更多
The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccen...The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete展开更多
Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected...Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.展开更多
It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of...It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.展开更多
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
文摘A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.
基金NEES/E-Defense Collaboration ResearchProjects for Bridges of the National Research Institute forEarth Science and Disaster Prevention (NIED), Japan.
文摘Structures behave multi-directionally when subjected to earthquake excitation. Thus, it is essential to evaluate the effect of multidirectional loading on the dynamic response and seismic performance of reinforced concrete bridge columns in order to develop more advanced and reliable design procedures. To investigate such effects, a 1/4 scaled circular reinforced concrete bridge column specimen was tested under two horizontal and one vertical components of a strong motion that has long duration with several strong pulses. Damage progress of reinforced concrete columns subjected to strong excitation was evaluated from the test. The test results demonstrate that the lateral force response in the principal directions become smaller than computed flexural capacity due to the bilateral flexural loading effects, and that the lateral response is not significantly affected by the fluctuation of the axial force because the horizontal response and axial force barely reached the maximum simultaneously due to difference of the predominant natural periods between the vertical and the horizontal directions. Accuracy of fiber analyses is discussed using the test results.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No.07QA14025).Acknowledgment The authors thank Dr. WU Yu-fei, the assistant professor of the City University of Hong Kong for providing good suggestion and help during the test. This research was also supported by the grant from the Research Grant Council of the Hong Kong Special Administrative Region (Grant No.Cityu1113/04E).
文摘Reinforced concrete (RC) columns lacking adequately detailed transverse reinforcement do not possess the necessary ductility to dissipate seismic energy during a major earthquake without severe strength degradation. In this paper, a new retrofit method, which utilized fiber-reinforced plastics (FRP) confinement mechanism and anchorage of embedded bars, was developed aiming to retrofit non-ductile large RC rectangular columns to prevent the damage of the plastic hinges. Carbon FRP (CFRP) sheets and glass FRP (GFRP) bars were used in this test, and five scaled RC columns were tested to examine the function of this new method for improving the ductility of columns. Responses of columns were examined before and after being retrofitted. Test results indicate that this new composite method can be very effective to improve the anti-seismic behavior of non-ductile RC columns compared with normal CFRP sheets retrofitted column.
文摘A nonlinear numerical model was developed to analyze reinforced concrete columns under combined axial load and bending up to failure. Results of reinforced concrete columns under eccentric compression tested to failure are presented and compared to results from a numerical nonlinear model. The tests involved 10 columns with cross-section of 250 mm × 120 mm, geometrical reinforcement ratio of 1.57% and concrete with compression strength around 40 MPa, with 3,000 mm in length. The main variable was the load eccentricity in the direction of the smaller dimension of cross-section. Experimental results of ultimate load and of the evolution of transverse displacements and concrete strains are compared with the numerical results. The estimated results obtained by the numerical model are close to the experimental ones, being suitable for use in verification of elements under combined axial load and bending.
文摘By axial compression tests on 6 reinforced concrete slender columns wrapped with carbon fiber-reinforced plastic (CFRP),with slenderness ratio(SR) from 4.5 to 17.5,the results show that when SR increases the retrofitting effect declines. In the case of same SR,the stability coefficient (SC) for the reinforced concrete(RC) columns with CFRP is much less than that without CFRP. There is 20% increase of stable bearing capacity to the former as compared with the latter when the SR in less than 17.5. The study summarized the simplified formula for SC,which provides a reference for engineering designers.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金National Natural Science Foundation of China under Grant Nos.51822801 and 51978022。
文摘In addition to the normal service loadings,engineering structures may be subjected to occasional loadings such as earthquakes,which may cause severe destruction.When the steel rebar is corroded,the damage could be more serious.To investigate the seismic performance of corroded RC columns,a three-dimensional mesoscale finite element model was established.In this approach,concrete was considered as a three-phase composite composed of aggregate,mortar matrix and interfacial transition zone(ITZ).The nonlinear spring were used to describe the bond slip between steel and concrete.The degradation of the material properties of the steel rebar and cover concrete as well as the bonding performance due to corrosion were taken into account.The rationality of the developed numerical analysis model was verified by the good agreement between the numerical results and the available experimental observation.On this basis,the effect of corrosion level,axial force ratio and shear-span ratio on the seismic performance of corroded RC columns,including lateral bearing capacity,ductility,and energy consumption,were explored and discussed.The simulation results indicate that the mesoscopic method can consider the heterogeneity of concrete,to more realistically and reasonably reflect the destruction process of structures.
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.
文摘Fire is an exceptional action that may occur during the life of a building.So,it must be considered when designing a building structure.The standards provide several types of design methods for that propose,used for single elements,parts of structure or the structure as a whole.The fire design of columns is important both for new project as for remodel buildings and also for verification of the residual resistance of columns that have suffered a fire accident.In this way,the aim of this work is to analyze numerically different ways of fire exposure to check the compressive strength of the columns when subjected to fire and the influence of the adjacent walls to a column in case of fire.The thermal advanced analysis of the sections columns was performed using the finite element software,Abaqus CAE,where the standard fire curve,ISO 834(International Organization for Standardization 834),was used,with 4 h of fire duration.It was possible,with the two methods used in this work,to compare them to verify which model is more conservative and which is closer to the advanced numerical model,for calculating temperatures in the column section.It was checked that the walls act as thermal insulators,protecting part of the columns from the convection and radiation of the fire.Consequently,the effects of raising the temperature over the compressive resistance of the reinforced concrete column,were reduced.
文摘The disorders originated from architectural design in buildings, show in different forms. One of them is the level difference originated from lot’s slope which affects structures through short column phenomenon. The great stiffness of short columns enables them to absorb large amounts of structural energy. Inattention of some manuals and regulations such as Earthquake regulations to this phenomenon necessitates paying further attention to it. On this basis, the present study employed experimental modeling and numerical modeling for a four-story reinforced concrete building that involves the analysis of simple 2-D frames of varying floor heights and varying number of bays using a very popular software tool STAAD Pro on both a sloping and a flat lot. Also Sap2000 software had been used to show that the displacement of floors is greater for a flat lot building than a sloping lot building. However, the increase in shear was found to be quite greater in short columns compared to common ones and an enormous moment should be tolerated by sloping lot structures. The greater stiffness of the structure was also revealed by non-linear static (Push-Over) analysis. According to the results, short column are required to have more resistant sections and are suggested to be reinforced with more bars. In addition, more steel should be used as stirrups than as longitudinal bars. Also for existing structures, shear capacity of short columns should be retrofitted by FRP, Steel Jacket or other materials.
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research(Base Research(c)(1),Research No.14550555)
文摘The objective of this paper is to provide an analytical basis for the quantitative evaluation of damage to a reinforced concrete structure based on the vibration data obtained by using the damage detection technique. A partial reinforced concrete system of a weak beam/strong column moment frame is chosen as an example. A pushover analysis is carried out in order to numerically examine both the story shear-relative displacement characteristics and the associated damage level. In the analysis, a two dimensional nonlinear finite element analysis is employed considering several constitutive models. As a result, the degradation of the stiffness at the damaged story is characterized in association with the story relative displacement. It is also pointed out that the rotation angle of the column-base is highly correlated with the story relative displacement. Based on the analytical findings, quantitative approaches for a structural health monitoring system are suggested considering both the current sensor technologies and those available in the future. Keywords nonlinear FEM analysis - structural health monitoring - reinforced concrete structure - story stiffness - rotation angle of column-base Supported by: Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (Base Research (c) (1), Research No. 14550555)
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2016A05 and 2016A06National Natural Science Foundation of China under Grant No.51478441
文摘The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.
基金The National Key Technology R&D Program of China(No.2014BAK11B04)the National Natural Science Foundation of China(No.51528802,51408126)the Natural Science Foundation of Jiangsu Province(No.BK20140631)
文摘In order to study the dynamic behavior of hybrid reinforced concrete columns, shaking table tests of three concrete columns with equal initial stiffness were conducted.The longitudinal reinforcements include an ordinary steel bar,a steel-fiber reinforced polymer(FRP) composite bar(SFCB), and hybrid reinforcement(steel bar and FRP bar, CH). Test results show that the peak ground acceleration(PGA) responses of different columns are similar to each other. For an ordinary reinforced concrete(RC) column, the plastic strain of the steel bar develops rapidly after the PGA of the input ground motion reaches 100 cm / s^2, and the corresponding residual strain develops dramatically. For a SFCB column, even after the peak strain reaches 0. 015, the residual strain is below 5 × 10^- 4. For the hybrid column C-H,the residual strain of the FRP bar is similar to that of the SFCB column. In general, concrete columns with hybrid steel and FRP bar reinforcement can achieve smaller residual deformation, and the SFCB reinforced columns can be constructed in extreme environments, such as offshore bridges, due to good anti-corrosion performance.
基金the National Natural Science Foundation of China (No.50508020)
文摘The effects of length and location of the steel corrosion on the structural behavior and load capacity of reinforced concrete (RC) columns have been investigated. Results of the accelerated corrosion process and eccentric load test are presented in detail. Effects of the location of the partial length, the corrosion level within partial length and the asymmetrical deterioration of the concrete section on the mechanical behavior and load capacity of corroded RC columns are discussed. It is found that the mechanical behavior and load carrying capacity of corroded RC columns are simultaneously affected by the above mentioned factors. For the corroded RC columns with large eccentricity, a higher corrosion level in the tensile corroded length and a greater asymmetrical deterioration of the concrete section can result in less ductile behavior and larger load reduction of the column; while for the corroded RC columns with small eccentricity, the less ductile behavior and the larger load reduction of the column may result from the higher corrosion level in the compressive corroded length and the greater asymmetrical deterioration of the concrete
基金the Programs for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education of China(No.IRT1067)the National Natural Science Foundation of China(No.51868065)。
文摘Additional hysteretic experiments for corroded rectangular reinforced concrete(RC)columns with an axial load ratio of 0.27 were implemented.A quasi-static cyclic lateral loading with constant axial force was subjected to tests.Herein,a modified ductility factor model for corroded RC column is developed on the basis of the previous work and additional experiments.The model involves the influence of both the corrosion ratio of longitudinal rebar and the axial load ratio.A four-linear envelope curve model concerning lateral load and displacement is proposed in a combination of determination rules of the peak point and the failure strength point.The hysteretic model of corroded RC columns is developed by considering both degraded unloading stiffness and reloading stiffness on the history peak point.The hysteretic model can predict the residual life of corroded RC columns under seismic loading.
基金supported by the National Natural Science Foundation of China (Grant Nos.51878445,51938011 and 51908405)。
文摘It is possible for certain building structures to encounter both the seismic load and blast load during their service life.With the development of the economy and the increase of security demand,the need for design of building structures against multi-hazard is becoming more and more obvious.Therefore,the damage analysis of building structures under the combined action of multiple hazards has become a very urgent requirement for disaster prevention and reduction.In this paper,the refined finite element model of reinforced concrete(RC)columns is established by using the explicit dynamic analysis software LS-DYNA.Combined with the Monte Carlo method,the damage law of RC columns under the combined action of random single earthquake or explosion disaster and multi-hazard is studied,and the damage groups are distinguished according to the damage index.Based on the support vector machine(SVM)algorithm,the dividing line between different damage degree groups is determined,and a rapid method for determining the damage degree of RC columns under the combined seismic and blast loads is proposed.Finally,suggestions for the design of RC column against multi-disaster are put forward.