In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be character...In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.展开更多
Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in s...Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.展开更多
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influenc...Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.展开更多
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an...Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.展开更多
The mechanical and physical properties of concrete specimens obtained from replacing natural coarse aggregate with waste vehi- cle rubber tires at levels of 2vol%, 5vol%, 7vol%, and 10vol% were studied, and the corros...The mechanical and physical properties of concrete specimens obtained from replacing natural coarse aggregate with waste vehi- cle rubber tires at levels of 2vol%, 5vol%, 7vol%, and 10vol% were studied, and the corrosion behavior of reinforcing steels was investigated in these specimens. Corrosion rates were determined by measuring the galvanic current between steel-reinforced concrete specimens both with and without chloride addition. The change in electrode potential of reinforcing steels in these concrete specimens was measured daily for a period of 60 d in accordance with the testing method in ASTM C876. The results show that the use of waste vehicle tires in concrete instead of coarse aggregate decreases the mechanical strength of the specimens, and increases the corrosion rates of the reinforcing steels embedded in the concretes.展开更多
A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in c...A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.展开更多
Reinforcement corrosion is the major cause of damage and early failure of reinforced concrete structures worldwide with subsequent enormous costs for maintenance, restoration and replacement. Many methods used today f...Reinforcement corrosion is the major cause of damage and early failure of reinforced concrete structures worldwide with subsequent enormous costs for maintenance, restoration and replacement. Many methods used today for assessment of reinforcement corrosion are based on electrochemical techniques that determine the free corrosion potential or polarization resistance. Most of these methods always consider the B value in Stern-Geary equation as constant. However, B changes with different condition. In this paper, potentialdynamic method is used to characterize the corrosion of reinforcing steel. The corrosion rate of Q235 carbon steel is measured with concrete environment. B is calculated real-time. By this way, the error of reinforcement corrosion rate is minimized.展开更多
The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced ...The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced concrete structures. Over the last 50 years, a tremendous effort has been spent by the international scientific community with laboratory research and experimental field studies in order to increase the resistance of concrete over corrosion. This paper presents an experimental study of the corrosion behaviour of reinforced concrete beams with simultaneous sustained flexural loading. For this purpose, 40 reinforced concrete beams of 5 different compositions were constructed and exposed in simulated harmful environmental conditions in 3 different stress ratios for a total period of 42 months. Their behavior against corrosion was determined via regular measurements of the electrical resistance of concrete (according to ASTM G57) and the corrosion potential of the steel-reinforced bars with the use of copper sulphate (CSE) as reference electrode (according to ASTM C876). A theoretical calculation of the corrosion rate was conducted based on the electrochemical measurements of the beams. The results indicate that the corrosion potential of steel decreased in time and more rapidly after the initiation of the corrosion process;the electrical resistance firstly increased, remained stable for a short period and then decreased with the corrosion development, as expected. An inversely proportional relationship of the water/cement ratio of a composition with its corrosion behaviour as well as an analogous relationship between the cement content of a composition and its corrosion behaviour was observed. Also, the corrosion rate of steel is increased gradually with increasing load.展开更多
The corrosion damage of 20 SiMn steel by sulphate-reducing bacteria(SRB)and the mitigation effect of organic silicon quaternary ammonium salt(OSA)were studied in sterilized mild alkaline simulated concrete pore soluti...The corrosion damage of 20 SiMn steel by sulphate-reducing bacteria(SRB)and the mitigation effect of organic silicon quaternary ammonium salt(OSA)were studied in sterilized mild alkaline simulated concrete pore solution(STR)with different additions of SRB and OSA at pH 9.35 for 28 days.Uniform corrosion occurs in STR medium while slight localized corrosion is observed in STR+OSA medium,and localized pitting corrosion occurs in STR+SRB and STR+SRB+OSA media.The largest pit depth reduces from 36.70μm in STR+SRB medium to 3.31μm in STR+SRB+OSA medium due to the mitigation effect of OSA.The corrosion rate reflected by weight loss and electrochemical impedance spectroscopy(EIS)results presents the order of STR<STR+OSA<STR+SRB+OSA<STR+SRB,which also proves that the presence of SRB can accelerate corrosion in a carbonated medium.However,OSA as an efficient bacteriostatic agent can reduce the excessive growth of SRB and thus reduce corrosion.展开更多
Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtur...Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtures on the corrosion resistance of the steel against chloride attack has been studied by using impressed current and impressed voltage techniques. The results indicate that the type and concentration of the used admixture have an important effect on the extent of chloride induced corrosion of the steel. The mechanism of corrosion of steel due to chloride attack was discussed. (Edited author abstract) 16 Refs.展开更多
Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment incl...Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.展开更多
The tensile strength of a corroded rebar in a 53-year-old concrete structure was studied. The microstructure of the metallic substrate, the fracture surface, and the corrosion product layers were investigated. Metallo...The tensile strength of a corroded rebar in a 53-year-old concrete structure was studied. The microstructure of the metallic substrate, the fracture surface, and the corrosion product layers were investigated. Metallographic observation results showed that the carbon steel was constituted of ferrite and some pearlite. The tensile test results indicated that the corroded rebar presented low strength and elongation. In addition, the fracture surface of the rebar in the tensile test displayed dimple fracture behavior. The Raman spectroscopy results indicated that corrosion products at the general corrosion zone were obviously different from those at the localized corrosion zone. The rust layer at the general corrosion zone was composed of goethite (α-FeOOH), magnetite (Fe304), and hematite (α-Fe203), while that of the pitting zone was made of feroxyhyte (δ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe203). However, the general tendencies that the corrosion products were constituted of a mix of oxides and hydroxides, the oxides mainly existed in the internal part and the hydroxides more presented in the external layer were observed.展开更多
Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated u...Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions.展开更多
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50538087, 50908103 and 50878098)
文摘In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.
文摘Reinforced concrete (RC) constructions are the innovation of sustainable constructions replacing masonry constructions. Despite this, the use of concrete and steel to improve the performance of structural members in service is a recurring problem due to the immediate or overtime appearance of cracks. The objective of this work was therefore to assess the damage phenomena of the steel-concrete interface in order to assess the performance of an RC structure. Samples of approximately 30 cm of reinforcement attacked by rust were taken from broken reinforced concrete columns and beams in order to determine the impact of corrosion on high adhesion steel (HA) and therefore on its ability to resist. The experimental results have shown that the corrosion degradation rates of reinforcing bars of different diameters increase as the diameter of the reinforcing bars decreases: 5% for HA12;23.75% for HA8 and 50% for HA6. Using the approach proposed by Mangat and Elgalf on the bearing capacity as a function of the progress of the corrosion phenomenon, these rates made it possible to assess the new fracture limits of corroded HA steels. For HA6 respectively HA8 and HA12, their initial limit resistances will decrease by 4/4, 3/4 and 1/4. Based on the results of this study and in order to guarantee their durability, an RC structure can be dimensioned by taking into account the effects of reinforcement corrosion.
基金the support by the National Natural Science Foundation of China(Nos.51208098 and 51678144)the National Basic Research Program of China(No.2015CB655100)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20161420)Industry-University Research Cooperative Innovation Fund of Jiangsu Province(No.BY2013091)
文摘Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.
基金financially supported by the National Key Basic Research Development Plan of China(973 Program,Grant No.2015CB655102)the National Natural Science Foundation of China(Grant Nos.51508272 and 51678304)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180433)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630558)the Open Research Funds for State Key Laboratory of High Performance Civil Engineering Materials(Grant No.2015CEM001)
文摘Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.
文摘The mechanical and physical properties of concrete specimens obtained from replacing natural coarse aggregate with waste vehi- cle rubber tires at levels of 2vol%, 5vol%, 7vol%, and 10vol% were studied, and the corrosion behavior of reinforcing steels was investigated in these specimens. Corrosion rates were determined by measuring the galvanic current between steel-reinforced concrete specimens both with and without chloride addition. The change in electrode potential of reinforcing steels in these concrete specimens was measured daily for a period of 60 d in accordance with the testing method in ASTM C876. The results show that the use of waste vehicle tires in concrete instead of coarse aggregate decreases the mechanical strength of the specimens, and increases the corrosion rates of the reinforcing steels embedded in the concretes.
基金supported by the Opening Project of Key Laboratory of Coastal Disaster and Defence of Ministry of Education, Hohai Universitythe Natural Science Fund of Hohai University (No. 2008432111).
文摘A nonlinear finite element model (FEM) of the corrosion of steel reinforcement in concrete has been successfully developed on the basis of mathematical analysis of the electrochemical process of steel corrosion in concrete. The influences of the area ratio and the Tafel constants of the anode and cathode on the potential and corrosion current density have been examined with the model. It has been found that the finite element calculation is more suitable for assessing the corrosion condition of steel reinforcement than ordinary electrochemical techniques due to the fact that FEM can obtain the distributions of potential and corrosion current density on the steel surface. In addition, the local corrosion of steel reinforcement in concrete is strengthened with the decrease of both the area ratio and the Tafel constants. These results provide valuable information to the researchers who investigate steel corrosion.
基金Supported by National Natural Science Foundation of China(Nos.51178154 and 51008098)
文摘Reinforcement corrosion is the major cause of damage and early failure of reinforced concrete structures worldwide with subsequent enormous costs for maintenance, restoration and replacement. Many methods used today for assessment of reinforcement corrosion are based on electrochemical techniques that determine the free corrosion potential or polarization resistance. Most of these methods always consider the B value in Stern-Geary equation as constant. However, B changes with different condition. In this paper, potentialdynamic method is used to characterize the corrosion of reinforcing steel. The corrosion rate of Q235 carbon steel is measured with concrete environment. B is calculated real-time. By this way, the error of reinforcement corrosion rate is minimized.
文摘The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced concrete structures. Over the last 50 years, a tremendous effort has been spent by the international scientific community with laboratory research and experimental field studies in order to increase the resistance of concrete over corrosion. This paper presents an experimental study of the corrosion behaviour of reinforced concrete beams with simultaneous sustained flexural loading. For this purpose, 40 reinforced concrete beams of 5 different compositions were constructed and exposed in simulated harmful environmental conditions in 3 different stress ratios for a total period of 42 months. Their behavior against corrosion was determined via regular measurements of the electrical resistance of concrete (according to ASTM G57) and the corrosion potential of the steel-reinforced bars with the use of copper sulphate (CSE) as reference electrode (according to ASTM C876). A theoretical calculation of the corrosion rate was conducted based on the electrochemical measurements of the beams. The results indicate that the corrosion potential of steel decreased in time and more rapidly after the initiation of the corrosion process;the electrical resistance firstly increased, remained stable for a short period and then decreased with the corrosion development, as expected. An inversely proportional relationship of the water/cement ratio of a composition with its corrosion behaviour as well as an analogous relationship between the cement content of a composition and its corrosion behaviour was observed. Also, the corrosion rate of steel is increased gradually with increasing load.
基金financially supported by the National Natural Science Foundation of China(No.51501201)。
文摘The corrosion damage of 20 SiMn steel by sulphate-reducing bacteria(SRB)and the mitigation effect of organic silicon quaternary ammonium salt(OSA)were studied in sterilized mild alkaline simulated concrete pore solution(STR)with different additions of SRB and OSA at pH 9.35 for 28 days.Uniform corrosion occurs in STR medium while slight localized corrosion is observed in STR+OSA medium,and localized pitting corrosion occurs in STR+SRB and STR+SRB+OSA media.The largest pit depth reduces from 36.70μm in STR+SRB medium to 3.31μm in STR+SRB+OSA medium due to the mitigation effect of OSA.The corrosion rate reflected by weight loss and electrochemical impedance spectroscopy(EIS)results presents the order of STR<STR+OSA<STR+SRB+OSA<STR+SRB,which also proves that the presence of SRB can accelerate corrosion in a carbonated medium.However,OSA as an efficient bacteriostatic agent can reduce the excessive growth of SRB and thus reduce corrosion.
文摘Corrosion and electrochemical behaviour of reinforcing steel embedded in cement pastes with and without concrete admixtures used in Egypt to modify concrete properties have been studied. The influence of the admixtures on the corrosion resistance of the steel against chloride attack has been studied by using impressed current and impressed voltage techniques. The results indicate that the type and concentration of the used admixture have an important effect on the extent of chloride induced corrosion of the steel. The mechanism of corrosion of steel due to chloride attack was discussed. (Edited author abstract) 16 Refs.
文摘Electrochemical chloride extraction is a promising technique for the rehabilitation of concrete structures under chloride induced corrosion. This study consists of an extensive literature review of this treatment including application cases. It is found that the rate of chlorides removed is affected by the total charge passed, whereas increasing charge in a range between 1500 to 2000 Ah/m<sup>2</sup> increases the amount of chlorides removed and this can be more effective by increasing current density instead of duration of treatment. Bound chlorides are extracted during treatment and, water works better than Ca(OH)<sub>2</sub> as an electrolyte, possibly due to modifications on the concrete pore structure. Moreover, ECE is not efficient in repassivate structures but is efficient in its purpose of removing chlorides if treatment setup is well planned, which justifies the need for better international standards on the topic.
基金Funded by the National Natural Science Foundation of China(51301060,51210001)the 111 Project(B12032)+1 种基金the Key Laboratory of Advanced Civil Engineering Materials(Tongji University),Ministry of Educationthe Fundamental Research Funds for the Central Universities(No.2013B03514)
文摘The tensile strength of a corroded rebar in a 53-year-old concrete structure was studied. The microstructure of the metallic substrate, the fracture surface, and the corrosion product layers were investigated. Metallographic observation results showed that the carbon steel was constituted of ferrite and some pearlite. The tensile test results indicated that the corroded rebar presented low strength and elongation. In addition, the fracture surface of the rebar in the tensile test displayed dimple fracture behavior. The Raman spectroscopy results indicated that corrosion products at the general corrosion zone were obviously different from those at the localized corrosion zone. The rust layer at the general corrosion zone was composed of goethite (α-FeOOH), magnetite (Fe304), and hematite (α-Fe203), while that of the pitting zone was made of feroxyhyte (δ-FeOOH), goethite (α-FeOOH), and hematite (α-Fe203). However, the general tendencies that the corrosion products were constituted of a mix of oxides and hydroxides, the oxides mainly existed in the internal part and the hydroxides more presented in the external layer were observed.
基金Funded by the National Natural Science Foundation of China(No. 59938170and 50178044)the Natural Science Foundation of Jiangsu Province of China (No. BK2005216)
文摘Freeze-thaw durabilities of three types of concretesnormal portland cement concrete (OPC), high strength concrete (HSC) and steel fiber reinforced high strength concrete (SFRHSC) were systemically investigated under the attacks of chemical solution, and combination of external flexural stress and chemical solution. Four kinds of bitterns from salt lakes in Sinkiang, Qinghai, Inner Mongolia and Tibet provinces of China were used as chemical attack solutions. The relative dynamic modulus (RDM) was used as an index for evaluating the damage degree during the course of chemical attack and stress corrosion. The experimental results show that the freeze-thaw durability of concrete is visibly reduced in the present of the flexural stress, i e, stress accelerates the damage process. In order to quantify the stress accelerated effect, a stress accelerating coefficient was proposed. The stress accelerating coefficient is closely related with the types of bitterns and the numbers of freeze-thaw cycles is. The more numbers of freeze-thaw cycles is, the greater the stress accelerating coefficient for various concretes will be. In addition, there also exists a critical ratio of external stress to the maximum flexural stress. If the stress ratio exceeds the critical one, the freeze-thaw durability of various concretes will be greatly decreased compared to the responding concretes without applied stress. The critical stress ratio of OPC, HSC and SFRHSC is 0.30, 0.40 and 0.40, respectively, indicating that HSC and SFRHSC have advantages over OPC and are suitable to use in the bittern erosion regions.