期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Analytical approach and field monitoring for mechanical behaviors of pipe roof reinforcement 被引量:2
1
作者 王海涛 贾金青 康海贵 《Journal of Central South University》 SCIE EI CAS 2009年第5期827-834,共8页
Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. Wi... Considering the delay effect of initial lining and revising the Winkler elastic foundation model,an analytical approach based on Pasternak elastic foundation beam theory for pipe roof reinforcement was put forward. With the example of a certain tunnel excavation,the comparison of the values of longitudinal strain of reinforcing pipe between field monitoring and analytical approach was made. The results indicate that Pasternak model,which considers a more realistic hypothesis in the elastic soil than Winkler model,gives more accurate calculation and agrees better with the result of field monitoring. The difference of calculation results between these two models is about 7%,and Pasternak model is proved to be a better way to study the reinforcement mechanism and improve design practice. The calculation results also reveal that the reinforcing pipes act as levers,which increases longitudinal load transfer to an unexcavated area,and consequently decreases deformation and increases face stability. 展开更多
关键词 tunnel heading pipe roof reinforcement Pasternak elastic foundation beam field monitoring
下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
2
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
A Stiffness Surface Method to Analyze the Cross-Sectional Mechanical Properties of Reinforced Thermoplastic Pipes Subjected to Axisymmetric Loads 被引量:3
3
作者 LIU Wencheng WANG Shuqing 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第4期811-822,共12页
Axial and hoop stiffness can describe the elastic responses of reinforced thermoplastic pipes(RTPs)subjected to axisymmetric loads,such as tension,compression,pressure,and crushing loads.However,an accurate analytical... Axial and hoop stiffness can describe the elastic responses of reinforced thermoplastic pipes(RTPs)subjected to axisymmetric loads,such as tension,compression,pressure,and crushing loads.However,an accurate analytical prediction cannot be provided because of the anisotropy of RTP laminates.In the present study,a stiffness surface method,in which the analytical expressions of the axial and hoop stiffness are derived as two concise formulas,is proposed.The axial stiffness formula is obtained by solving the equilibrium equations of RTPs under a uniaxial stress state based on the homogenization assumption,whereas the hoop stiffness formula is derived from the combination of the elastic stability theory,the classical lamination theory,and NASA SP-8007 formula.To verify the proposed method,three types of RTPs are modeled to conduct the quasi-static analyses of the tension and crushing cases.The consistency between numerical and analytical results verifies the effectiveness of the proposed method on the prediction of the axial and hoop stiffness of RTPs,which also proves the existence of stiffness surfaces.As the axial stiffness is proportional to the radii,the axial stiffness surface consists of a series of straight lines,which can be used to predict both thin-walled and thick-walled RTPs.Meanwhile,the hoop stiffness is more applicable for thin-walled RTPs because the proposed method ignores the proportional relationship between the homogenized hoop elastic moduli and the reciprocal radii in helical structures. 展开更多
关键词 reinforced thermoplastic pipes(RTPs) helical fibers axial stiffness hoop stiffness
下载PDF
Mechanical Properties Study of Reinforced Thermoplastic Pipes Under A Tensile Load 被引量:2
4
作者 WANG Yang-yang LOU Min +1 位作者 TONG Bing WANG Sen 《China Ocean Engineering》 SCIE EI CSCD 2020年第6期806-816,共11页
This paper presents a study on the tensile properties of reinforced thermoplastic pipes(RTPs). A mechanical model of RTPs with an arbitrary number of reinforced layers under tensile action is constructed by combining ... This paper presents a study on the tensile properties of reinforced thermoplastic pipes(RTPs). A mechanical model of RTPs with an arbitrary number of reinforced layers under tensile action is constructed by combining the constitutive relationship of elastoplastic materials with the continuous displacement condition. On this basis, the effects of various parameters such as the winding angle, the number of structurally reinforced layers, and the inner polyethylene(PE) liner thickness on the tensile properties of the RTPs were analyzed, and a tensile test was carried out for validation. The results showed that the winding angle of the structurally reinforced layers was the main factor affecting an RTP's tensile performance— decreases in the winding angle significantly improved its tensile ability,especially the longitudinal strength. With ±45° as the demarcation point, the winding angle smaller than ±45° will result in higher strength in longitudinal direction, and the lifting effect on RTP's mechanical properties of the increasing number of reinforcement layers was better than that of the increasing thickness of the lining layer;when the winding angle was larger than ±45°, the opposite results were obtained. The fibre load was more sensitive to the winding angle than the PE load. 展开更多
关键词 reinforced thermoplastic pipes tensile properties winding angle POLYETHYLENE
下载PDF
Stochastic Failure Analysis of Reinforced Thermoplastic Pipes Under Axial Loading and Internal Pressure 被引量:2
5
作者 WANG Yang-yang LOU Min +2 位作者 WANG Yu WU Wu-gang YANG Feng 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期614-628,共15页
This study explores how parametric uncertainties in the production affect failure tensile loads of reinforced thermoplastic pipes(RTPs)under combined loading conditions.The stress distributions in RTPs are examined wi... This study explores how parametric uncertainties in the production affect failure tensile loads of reinforced thermoplastic pipes(RTPs)under combined loading conditions.The stress distributions in RTPs are examined with three-dimensional(3D)elasticity theory,and the analytical micromechanics of composites are evaluated.To evaluate the failure mechanisms for RTPs,3D Hashin–Yeh failure criteria are combined with the damage evolution model to establish a progressive failure model.The theoretical model has been validated through numerical simulations and axial tensile tests data.To analyze how randomness of relevant parameters affects the first-ply failure(FPF)tensile load and final failure(FF)tensile load in RTPs,many samples are produced with the Monte–Carlo approach.The stochastic analysis results are statistically evaluated through the Weibull probability density distribution function.For the randomness of production parameters,the failure tensile load of RTPs fluctuates near the mean value.As the ply number at the reinforced layer increases,the dispersion of failure tensile load increases,with a high probability that the FPF tensile load of RTPs is lower than the mean value. 展开更多
关键词 reinforced thermoplastic pipes micromechanics evaluation progressive failure stochastic analysis
下载PDF
Optimizing Winding Angles of Reinforced Thermoplastic Pipes Based on Progressive Failure Criterion 被引量:2
6
作者 WANG Yangyang LOU Min +2 位作者 ZENG Xin DONG Wenyi WANG Sen 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1067-1078,共12页
This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under cha... This paper examines a scheme to optimize the multiple winding angles of reinforced thermoplastic pipes(RTPs)under internal and external pressures.To consider the nonlinear mechanical behavior of the material under changes of winding angle due to deformation,we use three-dimensional(3D)thick-walled cylinder theory with the 3D Hashin failure criterion and theory of the evolution of damage to composite materials,to formulate a model that analyzes the progressive failure of RTPs.The accuracy of the model was verified by experiments.A model to optimize the multiple winding angles of the RTPs was then established using the model for progressive failure analysis and a multi-island genetic algorithm.The optimal scheme for winding angles of RTPs capable of withstanding the maximum internal/external pressure was obtained.The simulation results showed that the ply number of the reinforced layer has a prominent nonlinear effect on the internal and external pressure capacity of the RTPs.Compared with RTPs with a single angle of±55°,the multiple winding angle overlay scheme based on the multi-angle optimization model improved the internal and external pressure capacity of the RTPs,and the improvement in the external pressure capacity was significantly better than the internal pressure carrying capacity. 展开更多
关键词 reinforced thermoplastic pipes 3D thick-walled cylinder theory multi-island genetic algorithm pressure capacity
下载PDF
Theoretical Prediction of the Bending Stiffness of Reinforced Thermoplastic Pipes Using a Homogenization Method 被引量:1
7
作者 LIU Wencheng WANG Shuqing +1 位作者 BU Jiarun DING Xindong 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1441-1453,共13页
The accurate prediction of bending stiffness is important to analyze the buckling and vibration behavior of reinforced thermoplastic pipes(RTPs)in practical ocean engineering.In this study,a theoretical method in whic... The accurate prediction of bending stiffness is important to analyze the buckling and vibration behavior of reinforced thermoplastic pipes(RTPs)in practical ocean engineering.In this study,a theoretical method in which the constitutive relationships between orthotropic and isotropic materials are unified under the global cylindrical coordinate system is proposed to predict the bending stiffness of RTPs.Then,the homogenization assumption is used to replace the multilayered cross-sections of RTPs with homogenized ones.Different from present studies,the pure bending case of homogenized RTPs is analyzed,considering homogenized RTPs as hollow cylindrical beams instead of using the stress functions proposed by Lekhnitskii.Therefore,the bending stiffness of RTPs can be determined by solving the homogenized axial elastic moduli and moment of inertia of cross sections.Compared with the existing theoretical method,the homogenization method is more practical,universal,and computationally stable.Meanwhile,the pure bending case of RTPs was simulated to verify the homogenization method via conducting ABAQUS Explicit quasi-static analyses.Compared with the numerical and existing theoretical methods,the homogenization method more accurately predicts the bending stiffness and stress field.The stress field of RTPs and the effect of winding angles are also discussed. 展开更多
关键词 reinforced thermoplastic pipes bending stiffness pure bending case homogenization assumption stress analysis
下载PDF
EXTRUSION DIE CAE OF THE STEEL REINFORCED PLASTIC PIPE
8
作者 W.Q.Ma H.Y.Sun +1 位作者 D.C.Kang K.D.Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第3期303-306,共4页
The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steelwires and plastic. Because reinforced skeleton of the steel wire increase the complexityof plastic flow during the extrusion ph... The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steelwires and plastic. Because reinforced skeleton of the steel wire increase the complexityof plastic flow during the extrusion phase, the traditional design criteria of extrusiondie is not suitable. The study on extrusion die of the kind of pipe is very importantstep in produce development. Using finite element (FE) method in this paper, theflow rule of molten plastic inside the die has been predicted and a groap of optimalstructural parameters was obtained. These results are helpful for reducing the designcycle and improve the quality of the final product. 展开更多
关键词 steel reinforced plastic pipe extrusion die computer aid engineering(CAE)
下载PDF
Performance Quality Testing under Combined Loading of Polyethylene Pipes Reinforced with Aramid Fiber
9
作者 Hilario Hemamdez-Moreno Erik Vargas-Rojas +4 位作者 Victor Manuel Sauce-Rangel Ivan Mortera-Bravo Jorge LuisGonzhlez-Velazquez Maarten P. Kruijer Margarita Navarrete-Montesinos 《Journal of Mechanics Engineering and Automation》 2014年第8期639-647,共9页
This paper presents the results of the performance quality testing of polyethylene pipes reinforced with aramid fibers, intended for applications such as discharging and gathering oil pipelines, and describes the test... This paper presents the results of the performance quality testing of polyethylene pipes reinforced with aramid fibers, intended for applications such as discharging and gathering oil pipelines, and describes the test rig specifically designed for this purpose. The pipe specimens are submitted to impact with a device that simulates the collision of a pickaxe, and of a backhoe loader. After the impact, the pipes are tested under combined loading comprising internal pressure, and transverse loading; some pipe specimens without previous impact are tested as well. The results show that the reinforced thermoplastic pipes can fully withstand maximal operating pressure levels in the presence of damage and additional transverse loading. 展开更多
关键词 Combined pressure-bending testing oil industry reinforced thermoplastic pipe composite materials.
下载PDF
Experimental Investigation of Defects Inspection for FRP Pipeline based on Single-side NMR
10
作者 YANG Yong LIU Chao +3 位作者 WANG Guan-jun LIAO Guang-zhi TAN Xiao-lin CHEN Kai 《International Journal of Technology Management》 2015年第9期37-39,共3页
The fiberglass reinforced plastic (FRP) pipelines have been used widely in oil-gas gathering and transportation. The defects of FRP pipelines would increase with the extension of service time. However, it is very di... The fiberglass reinforced plastic (FRP) pipelines have been used widely in oil-gas gathering and transportation. The defects of FRP pipelines would increase with the extension of service time. However, it is very difficult to detect the defects of FRP pipelines on-spot quickly. In this paper, a new method detecting defects for FRP pipes has been provided based on the NMR. The proton density distributions have been obtained at different depth of FRP components using single-side NMR. The experimental results show that there is a significant change of proton density distribution at the location of defects. And, these results would be useful for defects inspection of composite material component. 展开更多
关键词 Mobile Single-Side NMR FRP (fiber reinforced plastics) pipes Defects Non-destructive Testing
下载PDF
Influence of erosion voids and traffic loads on buried large-diameter reinforced concrete pipes
11
作者 Ming Xu Dawei Shen 《Underground Space》 SCIE EI CSCD 2024年第4期120-131,共12页
Geotechnical centrifuge tests were conducted to examine the influence of invert voids and surface traffic loads on 1400 mm diameter reinforced concrete pipes buried with a shallow soil cover depth of 700 mm.Void forma... Geotechnical centrifuge tests were conducted to examine the influence of invert voids and surface traffic loads on 1400 mm diameter reinforced concrete pipes buried with a shallow soil cover depth of 700 mm.Void formation beneath the pipe was simulated during centrifuge testing.The test results revealed that before void formation,the surface load directly above the middle of the pipe caused a significant increase in not only the circumferential bending moments but also the longitudinal bending moments,the latter of which was considerable and could not be ignored.Void formation beneath the middle of the pipe led to a reduction in both the circumferential bending moments and longitudinal bending moments at all measuring positions,i.e.,crown,springline,and invert.The most significant reduction occurred at the invert,and there was even a reversal in the sign of the invert longitudinal bending moment.A comparison was made between centrifuge tests with erosion voids and surface loads at different horizontal positions,which had a marked influence even when the positions differed by half a pipe length.Joint rotation played an important role in relieving large bending moments of pipe barrels in a jointed pipeline when the void and surface load were located at the joint. 展开更多
关键词 Centrifuge test Erosion void Reinforced concrete pipe Traffic loading Longitudinal bending moment Joint rotation
原文传递
Mechanical Response of Steel Wire Wound Reinforced Rubber Flexible Pipe under Internal Pressure 被引量:3
12
作者 谷凡 黄承逵 +1 位作者 周晶 李林普 《Journal of Shanghai Jiaotong university(Science)》 EI 2009年第6期747-756,共10页
Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the ana... Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers.Based on 3D anisotropic elastic theory,the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented.As the adjacent reinforcement layers with wound angle have different radii,the single reinforcement layer shows the effect of tensile-shear coupling.Moreover,the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method. 展开更多
关键词 steel wire wound reinforced rubber flexible pipe anisotropic elastic theory tensile-shear coupling
原文传递
Experimental study of the separated joint of an underground pipeline rehabilitated by cured-in-place pipe
13
作者 Jui-Min Hsu Keh-Jian Shou 《Underground Space》 SCIE EI 2022年第4期543-563,共21页
Reinforced concrete pipes(RCPs)were commonly used in older underground pipelines in Taiwan,China.However,their joints are prone to damage,including fracture and separation,from problems such as overloading,poor backfi... Reinforced concrete pipes(RCPs)were commonly used in older underground pipelines in Taiwan,China.However,their joints are prone to damage,including fracture and separation,from problems such as overloading,poor backfilling,and liquefaction.For the rehabilitation of such aged pipelines,trenchless methods are preferred to minimize the impact on transportation.The cured-in-place-pipe(CIPP)rehabilitation could be one of the most popular trenchless methods suitable for the cases with angular alignment and changing cross-section.However,according to the existing standards,no details are available on the performance of the rehabilitated parts of the damaged pipeline,including the effect of separated joint.This study designed and conducted laboratory testing on the composite pipe joint(the CIPP rehabilitated RCPs with a separated joint)with different scenarios,including radial and longitudinal loading tests.The radial test results indicated that,for a small separation distance,CIPP rehabilitation can restore the original function of a pipeline and improve its hoop strength.The longitudinal test revealed that the damage due to bending was controlled by the tensile strength of the liner material.The ultimate flexural strength decreased as the separation distance increased.However,pipelines may be subjected to additional loads due to flotation or subsidence,for which the longitudinal loading capacity is often the limiting parameter.For such conditions,it is necessary to confirm,by more research,whether the wall thickness is sufficient. 展开更多
关键词 Reinforced concrete pipes pipe joint REHABILITATION Cured-in-place pipe Trenchless technology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部