Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approac...Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approach–In this paper,an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed for connected EVs.The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving.Moreover,this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.Findings–To illustrate the performance for the EEDC-HRL,the controlled EV was trained and tested in various traffic flow states.The experimental results demonstrate that the proposed technique can effectively improve energy efficiency,without sacrificing travel efficiency,comfort,safety and lane-changing performance in different traffic flow states.Originality/value–In light of the aforementioned discussion,the contributions of this paper are two-fold.An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs.A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.展开更多
基金China Automobile Industry Innovation and Development Joint Fund(U1864206).
文摘Purpose–This study aims to propose an enhanced eco-driving strategy based on reinforcement learning(RL)to alleviate the mileage anxiety of electric vehicles(EVs)in the connected environment.Design/methodology/approach–In this paper,an enhanced eco-driving control strategy based on an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed for connected EVs.The EEDC-HRL simultaneously controls longitudinal velocity and lateral lane-changing maneuvers to achieve more potential eco-driving.Moreover,this study redesigns an all-purpose and efficient-training reward function with the aim to achieve energy-saving on the premise of ensuring other driving performance.Findings–To illustrate the performance for the EEDC-HRL,the controlled EV was trained and tested in various traffic flow states.The experimental results demonstrate that the proposed technique can effectively improve energy efficiency,without sacrificing travel efficiency,comfort,safety and lane-changing performance in different traffic flow states.Originality/value–In light of the aforementioned discussion,the contributions of this paper are two-fold.An enhanced eco-driving strategy based an advanced RL algorithm in hybrid action space(EEDC-HRL)is proposed to jointly optimize longitudinal velocity and lateral lane-changing for connected EVs.A full-scale reward function consisting of multiple sub-rewards with a safety control constraint is redesigned to achieve eco-driving while ensuring other driving performance.