A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of ...A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of the dependence of repayment on each agent itself and the choice of other agents.Utilizing the idea of DAI,the intellectual unit of each robot and the change of task and environment,each agent can make decisions independently and finish various complicated tasks by communication and reciprocation between each other.The method is superior to other reinforcement learning methods commonly used in the multi-agent system.It can improve the convergence velocity of reinforcement learning,decrease requirements of computer memory,and enhance the capability of computing and logical ratiocinating for agent.The result of a simulated robot soccer match proves that the proposed cooperative strategy is valid.展开更多
Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are ve...Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties.展开更多
文摘A dynamic cooperation model of multi-agent is established by combining reinforcement learning with distributed artificial intelligence(DAI),in which the concept of individual optimization loses its meaning because of the dependence of repayment on each agent itself and the choice of other agents.Utilizing the idea of DAI,the intellectual unit of each robot and the change of task and environment,each agent can make decisions independently and finish various complicated tasks by communication and reciprocation between each other.The method is superior to other reinforcement learning methods commonly used in the multi-agent system.It can improve the convergence velocity of reinforcement learning,decrease requirements of computer memory,and enhance the capability of computing and logical ratiocinating for agent.The result of a simulated robot soccer match proves that the proposed cooperative strategy is valid.
基金supported by the National Natural Science Foundation of China(Nos.91860203,51821091,51872239,52002321 and 52061135102)the China Postdoctoral Science Foundation(No.2019M660265)+3 种基金the Fundamental Research Funds for the Central Universities(China,Nos.G2019KY05116,G2020KY05125)the Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team(No.2020TD003)the Creative Research Foundation of Science and Technology on Thermostructural Composite Materials Laboratory(Nos.614291102010517,5050200015 and 5150200033)the Shaanxi Provincial Education Department of China(No.2020JQ-170)。
文摘Carbon fiber reinforced carbon composites(C/Cs),are the most promising high-temperature materials and could be widely applied in aerospace and nucleation fields,owing to their superior performances.However,C/Cs are very susceptible to destructive oxidation and thus fail at elevated temperatures.Though matrix modification and coating technologies with Si-based and ultra-high temperature ceramics(UHTCs)are valid to enhance the oxidation/ablation resistance of C/Cs,it’s not sufficient to satisfy the increasing practical applications,due to the inherent brittleness of ceramics,mismatch issues between coatings and C/C substrates,and the fact that carbonaceous matrices are easily prone to high-temperature oxidation.To effectively solve the aforementioned problems,micro/nano multiscale reinforcing strategies have been developed for C/Cs and/or the coatings over the past two decades,to fabricate C/Cs with high strength and excellent high-temperature stability.This review is to systematically summarize the most recent major and important advancements in some micro/nano multiscale strategies,including nanoparticles,nanowires,carbon nanotubes/fibers,whiskers,graphene,ceramic fibers and hybrid micro/nano structures,for C/Cs and/or the coatings,to achieve high-temperature oxidation/ablation-resistant C/Cs.Finally,this review is concluded with an outlook of major unsolved problems,challenges to be met and future research advice for C/Cs with excellent comprehensive mechanical-thermal performance.It’s hoped that a better understanding of this review will be of high scientific and industrial interest,since it provides unusual and feasible new ideas to develop potential and practical C/Cs with improved high-temperature mechanical and oxidation/ablation-resistant properties.