Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead s...Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead specify a cementitious mix design that is proven to exhibit a code prescribed resistance level (class) to a given exposure environment. Such compliance will lead to the protection of the steel reinforcement from corrosion and the cementitious mortar from degradation, during the design lifespan of the structure, under aggressive environmental exposure conditions such as, marine or deicing salts and carbonation. In this context, the enhancement of the physical and durability properties of common cement-based mortars under chloride exposure are experimentally investigated herein. In particular, the experimental program reported herein aims to evaluate the influence of incorporating multi-walled carbon nanotubes on the physical and mechanical properties of reinforced mortars against chloride ions. Furthermore, the anticorrosion protection of cementitious composites prepared with nanomaterials at 0.2% w/w is further investigated, by comparing all test results against reference specimens prepared without any additive. Electrochemical (Half-cell potential, corrosion current) and mass loss of reinforcement steel measurements were performed, while the porosity, capillary absorption and flexural strength were measured to evaluate the mechanical and durability characteristics of the mortars, following a period of exposure of eleven months;SEM images coupled with EDX analysis were further recorded and used for microstructure observation. The test results indicate that the inclusion of the nanomaterials in the mix improved the durability of the mortar specimens, while the nano-modified composites exhibited higher chloride penetration resistance and flexural strength than the corresponding values of the reference mortars. The test results and the comparison between nanomodified and reference mortars showed that the use of CNTs as addition led to protection of steel reinforcing bars against pitting corrosion and a significant improvement in flexural strength and porosity of the mortars.展开更多
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera...Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.展开更多
文摘Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead specify a cementitious mix design that is proven to exhibit a code prescribed resistance level (class) to a given exposure environment. Such compliance will lead to the protection of the steel reinforcement from corrosion and the cementitious mortar from degradation, during the design lifespan of the structure, under aggressive environmental exposure conditions such as, marine or deicing salts and carbonation. In this context, the enhancement of the physical and durability properties of common cement-based mortars under chloride exposure are experimentally investigated herein. In particular, the experimental program reported herein aims to evaluate the influence of incorporating multi-walled carbon nanotubes on the physical and mechanical properties of reinforced mortars against chloride ions. Furthermore, the anticorrosion protection of cementitious composites prepared with nanomaterials at 0.2% w/w is further investigated, by comparing all test results against reference specimens prepared without any additive. Electrochemical (Half-cell potential, corrosion current) and mass loss of reinforcement steel measurements were performed, while the porosity, capillary absorption and flexural strength were measured to evaluate the mechanical and durability characteristics of the mortars, following a period of exposure of eleven months;SEM images coupled with EDX analysis were further recorded and used for microstructure observation. The test results indicate that the inclusion of the nanomaterials in the mix improved the durability of the mortar specimens, while the nano-modified composites exhibited higher chloride penetration resistance and flexural strength than the corresponding values of the reference mortars. The test results and the comparison between nanomodified and reference mortars showed that the use of CNTs as addition led to protection of steel reinforcing bars against pitting corrosion and a significant improvement in flexural strength and porosity of the mortars.
文摘Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall.