Structural and thermodynamic parameters of 16 chloro-phenol compounds in water solution were calculated and fully optimized by using Onsager model in self-consistent reaction field(SCRF) based on the B3LYP/6-311G*...Structural and thermodynamic parameters of 16 chloro-phenol compounds in water solution were calculated and fully optimized by using Onsager model in self-consistent reaction field(SCRF) based on the B3LYP/6-311G** level.These quantum chemical parameters were used as theoretical descriptors to correlate with the experimental biodegradation rate constant(Kb) of 16 compounds by stepwise multiple linear regression.As a result,a three-parameter model including molecular average polarizability(α),entropy(Sθ),and molar heat capacity at constant volume(CVθ) were established for Kb prediction,which was proposed with correlation coefficient R2 = 0.894.α exhibits the most significant effect on Kb.Variance analysis and standard t-value test were applied to validate the model.As expected,this model exhibits good robustness and prediction ability,which can be used in Kb prediction of analogs.展开更多
18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical so...18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).展开更多
基金Supported by the State Key Program of NNSFC (No. 20737001)NNSFC (No. 20977044)
文摘Structural and thermodynamic parameters of 16 chloro-phenol compounds in water solution were calculated and fully optimized by using Onsager model in self-consistent reaction field(SCRF) based on the B3LYP/6-311G** level.These quantum chemical parameters were used as theoretical descriptors to correlate with the experimental biodegradation rate constant(Kb) of 16 compounds by stepwise multiple linear regression.As a result,a three-parameter model including molecular average polarizability(α),entropy(Sθ),and molar heat capacity at constant volume(CVθ) were established for Kb prediction,which was proposed with correlation coefficient R2 = 0.894.α exhibits the most significant effect on Kb.Variance analysis and standard t-value test were applied to validate the model.As expected,this model exhibits good robustness and prediction ability,which can be used in Kb prediction of analogs.
基金This work was supported by the National Natural Science Foundation of China (No. 20477034) and the Education Foundation of Hunan Province (No. 04C750).
文摘18 Physicochemical and quantum chemical parameters of 12 kinds of chlorophenols are calculated in this paper. QSBR (quantitative structure-biodegradability relationship) study is performed using simca statistical software by PLS regression analysis method on anaerobic biodegradation data (logKb), and the QSBR model is developed with favorable prediction. The model shows that the size and energy of the molecule are the dominant factors affecting the anaerobic biodegradation of chlorophenols. And the degradation rate constants (logKb) increase with the increase of core-core repulsion (CCR), average molecular polarizability (α), total surface area (TSA), heat of formation (HOF) and total energy (TE). while decrease with the increase of molecular connectivity index (^1X^V), relative molecular mass (Mw) and electronic energy (EE).