In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
获得空间电磁场场强分布是电磁频谱管理的重要任务之一,研究如何提高其计算性能以适应快速变化的空间电磁环境具有重要的意义。OpenMP(Open Multi Processing)是一种简单快速提高计算效率的方式,它有助于CPU多核资源被充分利用。提出了...获得空间电磁场场强分布是电磁频谱管理的重要任务之一,研究如何提高其计算性能以适应快速变化的空间电磁环境具有重要的意义。OpenMP(Open Multi Processing)是一种简单快速提高计算效率的方式,它有助于CPU多核资源被充分利用。提出了一种基于Open MP的并行获得空间电磁场场强分布方法,通过合理分析计算过程,设计相应并行方案,使得设计的并行算法适合CPU多核处理方式,并行度高。大量实验结果表明,该并行算法明显提高了计算效率,且具有高可扩展性。展开更多
In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and di...In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and discuss the iteratively B-convergence of the Newton iterative process for solving the algebraic equations of the scheme, secondly we present a strategy providing initial values parallelly for the iterative process. Finally, some numerical results show that our parallel scheme is higher efficient as N is not so large.展开更多
The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics ...The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics of the components.For the conventional frequency-domain electromagnetic analysis using FEM(Finite Element Method),the system matrix is complex-numbered as well as indefinite.The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps.However,such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver.It is also hard to benefit from matrix factorization techniques due to varying system matrix parts according to frequency.Overall,it is hard to adopt conventional iterative solvers even though the system matrix is sparse.A new parallel iterative FEM solver for frequency domain analysis is implemented for inhomogeneous waveguide structures in this paper.In this implementation,the previous solution of the iterative solver of Matlab(Matrix Laboratory)employ-ing the preconditioner is used for the initial guess for the next step’s solution process.The overlapped parallel stage using Matlab’s Parallel Computing Toolbox is also proposed to alleviate the cold starting,which ruins the convergence of early steps in each parallel stage.Numerical experiments based on waveguide structures have demonstrated the accuracy and efficiency of the proposed scheme.展开更多
Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation fr...Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method.展开更多
The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic part...The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic parts to obtain more variational information.A model generated from a topographic surface database is more appropriate to represent gradiometric effects derived from near-surface mass,as other kinds of data can hardly reach the spatial resolution requirement.The rectangle prism method,namely an analytic integration of Newtonian potential integrals,is a reliable and commonly used approach to modeling gravity gradient,whereas its computing efficiency is extremely low.A modified rectangle prism method and a graphical processing unit(GPU)parallel algorithm were proposed to speed up the modeling process.The modified method avoided massive redundant computations by deforming formulas according to the symmetries of prisms’integral regions,and the proposed algorithm parallelized this method’s computing process.The parallel algorithm was compared with a conventional serial algorithm using 100 elevation data in two topographic areas(rough and moderate terrain).Modeling differences between the two algorithms were less than 0.1 E,which is attributed to precision differences between single-precision and double-precision float numbers.The parallel algorithm showed computational efficiency approximately 200 times higher than the serial algorithm in experiments,demonstrating its effective speeding up in the modeling process.Further analysis indicates that both the modified method and computational parallelism through GPU contributed to the proposed algorithm’s performances in experiments.展开更多
Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/N...Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.展开更多
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
文摘获得空间电磁场场强分布是电磁频谱管理的重要任务之一,研究如何提高其计算性能以适应快速变化的空间电磁环境具有重要的意义。OpenMP(Open Multi Processing)是一种简单快速提高计算效率的方式,它有助于CPU多核资源被充分利用。提出了一种基于Open MP的并行获得空间电磁场场强分布方法,通过合理分析计算过程,设计相应并行方案,使得设计的并行算法适合CPU多核处理方式,并行度高。大量实验结果表明,该并行算法明显提高了计算效率,且具有高可扩展性。
基金national natural science foundation natural science foundation of Gansu province.
文摘In this paper, based on the implicit Runge-Kutta(IRK) methods, we derive a class of parallel scheme that can be implemented on the parallel computers with Ns(N is a positive even number) processors efficiently, and discuss the iteratively B-convergence of the Newton iterative process for solving the algebraic equations of the scheme, secondly we present a strategy providing initial values parallelly for the iterative process. Finally, some numerical results show that our parallel scheme is higher efficient as N is not so large.
基金supported by Institute of Information&communications Technology Planning&Evaluation(ITP)grant funded by the Korea govermment(MSIT)(No.2019-0-00098,Advanced and Integrated Software Development for Electromagnetic Analysis)supported by Research Assistance Program(2021)in the Incheon National University.
文摘The finite element method is a key player in computational electromag-netics for designing RF(Radio Frequency)components such as waveguides.The frequency-domain analysis is fundamental to identify the characteristics of the components.For the conventional frequency-domain electromagnetic analysis using FEM(Finite Element Method),the system matrix is complex-numbered as well as indefinite.The iterative solvers can be faster than the direct solver when the solver convergence is guaranteed and done in a few steps.However,such complex-numbered and indefinite systems are hard to exploit the merit of the iterative solver.It is also hard to benefit from matrix factorization techniques due to varying system matrix parts according to frequency.Overall,it is hard to adopt conventional iterative solvers even though the system matrix is sparse.A new parallel iterative FEM solver for frequency domain analysis is implemented for inhomogeneous waveguide structures in this paper.In this implementation,the previous solution of the iterative solver of Matlab(Matrix Laboratory)employ-ing the preconditioner is used for the initial guess for the next step’s solution process.The overlapped parallel stage using Matlab’s Parallel Computing Toolbox is also proposed to alleviate the cold starting,which ruins the convergence of early steps in each parallel stage.Numerical experiments based on waveguide structures have demonstrated the accuracy and efficiency of the proposed scheme.
基金This work was supported by the National Key Research and Development Program of China[Grant No.2016YFC0800200]the National Natural Science Foundation of China[Grant Nos.51778568,51908492,and 52008366]+1 种基金Zhejiang Provincial Natural Science Foundation of China[Grant Nos.LQ21E080019 and LY21E080022]This work was also sup-ported by the Key Laboratory of Space Structures of Zhejiang Province(Zhejiang University)and the Center for Balance Architecture of Zhejiang University.
文摘Large deformation contact problems generally involve highly nonlinear behaviors,which are very time-consuming and may lead to convergence issues.The finite particle method(FPM)effectively separates pure deformation from total motion in large deformation problems.In addition,the decoupled procedures of the FPM make it suitable for parallel computing,which may provide an approach to solve time-consuming issues.In this study,a graphics processing unit(GPU)-based parallel algorithm is proposed for two-dimensional large deformation contact problems.The fundamentals of the FPM for planar solids are first briefly introduced,including the equations of motion of particles and the internal forces of quadrilateral elements.Subsequently,a linked-list data structure suitable for parallel processing is built,and parallel global and local search algorithms are presented for contact detection.The contact forces are then derived and directly exerted on particles.The proposed method is implemented with main solution procedures executed in parallel on a GPU.Two verification problems comprising large deformation frictional contacts are presented,and the accuracy of the proposed algorithm is validated.Furthermore,the algorithm’s performance is investigated via a large-scale contact problem,and the maximum speedups of total computational time and contact calculation reach 28.5 and 77.4,respectively,relative to commercial finite element software Abaqus/Explicit running on a single-core central processing unit(CPU).The contact calculation time percentage of the total calculation time is only 18%with the FPM,much smaller than that(50%)with Abaqus/Explicit,demonstrating the efficiency of the proposed method.
文摘The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic parts to obtain more variational information.A model generated from a topographic surface database is more appropriate to represent gradiometric effects derived from near-surface mass,as other kinds of data can hardly reach the spatial resolution requirement.The rectangle prism method,namely an analytic integration of Newtonian potential integrals,is a reliable and commonly used approach to modeling gravity gradient,whereas its computing efficiency is extremely low.A modified rectangle prism method and a graphical processing unit(GPU)parallel algorithm were proposed to speed up the modeling process.The modified method avoided massive redundant computations by deforming formulas according to the symmetries of prisms’integral regions,and the proposed algorithm parallelized this method’s computing process.The parallel algorithm was compared with a conventional serial algorithm using 100 elevation data in two topographic areas(rough and moderate terrain).Modeling differences between the two algorithms were less than 0.1 E,which is attributed to precision differences between single-precision and double-precision float numbers.The parallel algorithm showed computational efficiency approximately 200 times higher than the serial algorithm in experiments,demonstrating its effective speeding up in the modeling process.Further analysis indicates that both the modified method and computational parallelism through GPU contributed to the proposed algorithm’s performances in experiments.
基金supported by the National Natural Science Foundation of China (No.11172134)the Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX13_132)
文摘Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.