Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from ...Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from source, production and processing to enhance use efficiency of raw materials and guarantee raw material safety.展开更多
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t...Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.展开更多
Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic beha...Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic behaviors of these piles.This paper subjects the bearing capacity,stiffness,frictional behavior,and material efficiency of the tapered helical piles to scrutiny.Tapered helical piles are introduced herein as an alternative option to improve the material efficiency of hollow piles.Based on the Taguchi method,a series of experiments was designed and conducted.The axial responses of tapered helical piles are also investigated using finite element analyses.The results derived from loadedisplacement curves and strain gages are used to characterize the axial compression responses of tapered helical piles.The effects of tapered angle,helices diameter and helices distance are examined using dimensionless parameters,and the degree of contribution of these factors is calculated on each of the enumerated variables individually.Experimental results show that the shaft friction resistance of tapered helical piles increases continuously with the pile head settlement.Furthermore,the effect of tapered wall on the shaft friction resistance is more tangible at low stress levels.The results showed that the relative material efficiency factor of the optimum pile could be 2.5 times that of unoptimized pile with a similar quantity of material.展开更多
文摘Non-tobacco related materials (NTRM) come from field production, tobacco stringing, grading and purchasing, affecting cigarette quality and having potential safety hazard. The research reviewed control on NTRM from source, production and processing to enhance use efficiency of raw materials and guarantee raw material safety.
基金King Abdulaziz City for Science and Technology (KACST) for the fellowshipfunding from the European Union’s Horizon 2020 research and innovation program GRAPHENE Flagship Core 3 under agreement No.: 881603+2 种基金funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk?odowska-Curie grant agreement No. 945363funding from the Shanghai Pujiang Program (22PJ1401200)the National Natural Science Foundation of China (No. 52302229)
文摘Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination.
文摘Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic behaviors of these piles.This paper subjects the bearing capacity,stiffness,frictional behavior,and material efficiency of the tapered helical piles to scrutiny.Tapered helical piles are introduced herein as an alternative option to improve the material efficiency of hollow piles.Based on the Taguchi method,a series of experiments was designed and conducted.The axial responses of tapered helical piles are also investigated using finite element analyses.The results derived from loadedisplacement curves and strain gages are used to characterize the axial compression responses of tapered helical piles.The effects of tapered angle,helices diameter and helices distance are examined using dimensionless parameters,and the degree of contribution of these factors is calculated on each of the enumerated variables individually.Experimental results show that the shaft friction resistance of tapered helical piles increases continuously with the pile head settlement.Furthermore,the effect of tapered wall on the shaft friction resistance is more tangible at low stress levels.The results showed that the relative material efficiency factor of the optimum pile could be 2.5 times that of unoptimized pile with a similar quantity of material.