We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method ...We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly.展开更多
CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in cu...CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in current phenomenology is identified to be related to the product of the relative energy to the relative time between the s and d quarks in these kaons. The argument of the CP violating parameter ? is predicted to be 45? without employing measured data. The K0S decay rate is twice the K0L -K0S masss difference, in near agreement with data, and both are proportional to the square of the relative energy 29.44 eV. Any pion from K0L decay will also have a mass shift of ≈1.28 × 10-5 eV. The present first principles’ theory is consistent with CP conservation. To achieve CP violation, the relative time cannot extend to both +∞ and -∞ but is bounded in at least one direction. The values of these bounds lie outside the present theory and it is unknown how they can be brought forth. -B0 mixing is also considered and the relative energy is 663.66 eV.展开更多
Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory...Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory, SSI. The origin of the “darkness” is that quarks cannot be observed individually.展开更多
By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum ...By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.展开更多
Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between...Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between quarks in protons in cold hydrogen gas in outskirts of the universe. The mechanisms for such creation of dark matter and PRE are reviewed and updated in greater detail and clearer manner. The so-generated dark matter in a galaxy can account for the galaxy’s rotation curve. Star formation in this galaxy uses up the hydrogen atoms and thereby reduces its dark matter content. Dark matter created in intergalactic hydrogen gas can form filaments. In a hypothetical model of the universe, a hydrogen atom with a small amount of negative relative energy or dark matter at the outskirts of this universe can via collisions with other atoms turn into one with a small positive relative energy PRE. Once such a sign change takes place, gravitational attraction switches to anti-gravity repulsion unopposed by any pressure gradient. This leads to a “run away” hydrogen atom moving away from the mass center of the universe and provides a basic mechanism for the accelerating expansion of the universe. This theoretical expansion and the measured redshift data are both compatible with the conception of an acceleratingly expanding universe and complement each other. But they cannot verify each other directly because the present model has been constructed for purposes different from those of the measurements. But it can be shown that both approaches do support each other qualitatively under certain circumstances for small velocities. Dark matter and PRE in the present model are not foreign objects like WIMPs and dark energy-cosmological constant but can only be created in cold hydrogen gas in gravitational field. To achieve this, infrequent collisions among the hydrogen atoms must take place. Dark matter was created first and can eventually later evolve into PRE in the outskirts of the universe and in the intergalactic void. Dark matter and PRE will disappear if the hydrogen atom carrying them becomes ionized as in stars.展开更多
An upper limit of the average ratio dark matter/ordinary matter in galaxies is estimated to be 8.4, in agreement with the observed ratio 5.4. Upper limit of the average ratio dark energy/ordinary matter for slowly mov...An upper limit of the average ratio dark matter/ordinary matter in galaxies is estimated to be 8.4, in agreement with the observed ratio 5.4. Upper limit of the average ratio dark energy/ordinary matter for slowly moving protons in the outer parts of the universe is estimated to be 8.4, much less than the observed ratio 13.6. The discrepancy is tentatively attributed to that the bulk of the protons in these outer parts of the universe moves fastly and their contribution to dark energy has not been estimated. The positive and negative relative energies between the diquark and quark in the proton play the roles of dark energy and dark matter, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.10775063)
文摘We have measured the cross-section ratios of helium induced by Cq+ and Oq+ (q = 1-4) in an energy range from 20 keV/amu to 500 keV/amu, and obtained the two-dimensional spectra by employing the coincidence method combined with the MPA-3 data acquisition system. Hence, we obtain the ratios of total single-ionization cross-sections (SI, SC, SLSI, and DLSI), total double-ionization cross-sections (DI, DC, TI, SLDI, and DLDI) and cross-sections of every process (SI, SC, SLSI, DLSI, DI, DC, TI, SLDI, and DLDI), which induce the single-ionization and double-ionization, to the total cross sections respectively. The competitive relations between the reaction-channels and the experimental data law of each reaction-channel are revealed explicitly, and the qualitative explanations involved in those results are also presented accordingly.
文摘CP conservation and violation in neutral kaon decay are considered from a first principles’ theory, recently published as “Scalar Strong Interaction Hadron Theory”. The arbitrary phase angle relating K0 and 0 in current phenomenology is identified to be related to the product of the relative energy to the relative time between the s and d quarks in these kaons. The argument of the CP violating parameter ? is predicted to be 45? without employing measured data. The K0S decay rate is twice the K0L -K0S masss difference, in near agreement with data, and both are proportional to the square of the relative energy 29.44 eV. Any pion from K0L decay will also have a mass shift of ≈1.28 × 10-5 eV. The present first principles’ theory is consistent with CP conservation. To achieve CP violation, the relative time cannot extend to both +∞ and -∞ but is bounded in at least one direction. The values of these bounds lie outside the present theory and it is unknown how they can be brought forth. -B0 mixing is also considered and the relative energy is 663.66 eV.
文摘Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory, SSI. The origin of the “darkness” is that quarks cannot be observed individually.
文摘By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.
文摘Dark matter is identified as negative relative energy between quarks in proton and is generated in cold hydrogen gas with pressure gradient in gravitational field. Positive relative energy PRE can be generated between quarks in protons in cold hydrogen gas in outskirts of the universe. The mechanisms for such creation of dark matter and PRE are reviewed and updated in greater detail and clearer manner. The so-generated dark matter in a galaxy can account for the galaxy’s rotation curve. Star formation in this galaxy uses up the hydrogen atoms and thereby reduces its dark matter content. Dark matter created in intergalactic hydrogen gas can form filaments. In a hypothetical model of the universe, a hydrogen atom with a small amount of negative relative energy or dark matter at the outskirts of this universe can via collisions with other atoms turn into one with a small positive relative energy PRE. Once such a sign change takes place, gravitational attraction switches to anti-gravity repulsion unopposed by any pressure gradient. This leads to a “run away” hydrogen atom moving away from the mass center of the universe and provides a basic mechanism for the accelerating expansion of the universe. This theoretical expansion and the measured redshift data are both compatible with the conception of an acceleratingly expanding universe and complement each other. But they cannot verify each other directly because the present model has been constructed for purposes different from those of the measurements. But it can be shown that both approaches do support each other qualitatively under certain circumstances for small velocities. Dark matter and PRE in the present model are not foreign objects like WIMPs and dark energy-cosmological constant but can only be created in cold hydrogen gas in gravitational field. To achieve this, infrequent collisions among the hydrogen atoms must take place. Dark matter was created first and can eventually later evolve into PRE in the outskirts of the universe and in the intergalactic void. Dark matter and PRE will disappear if the hydrogen atom carrying them becomes ionized as in stars.
文摘An upper limit of the average ratio dark matter/ordinary matter in galaxies is estimated to be 8.4, in agreement with the observed ratio 5.4. Upper limit of the average ratio dark energy/ordinary matter for slowly moving protons in the outer parts of the universe is estimated to be 8.4, much less than the observed ratio 13.6. The discrepancy is tentatively attributed to that the bulk of the protons in these outer parts of the universe moves fastly and their contribution to dark energy has not been estimated. The positive and negative relative energies between the diquark and quark in the proton play the roles of dark energy and dark matter, respectively.