This is the first paper in a two part series on black holes. In this work, we concern ourselves with the event horizon. A second follow-up paper will deal with its internal structure. We hypothesize that black holes a...This is the first paper in a two part series on black holes. In this work, we concern ourselves with the event horizon. A second follow-up paper will deal with its internal structure. We hypothesize that black holes are 4-dimensional spatial, steady state, self-contained spheres filled with black-body radiation. As such, the event horizon marks the boundary between two adjacent spaces, 4-D and 3-D, and there, we consider the radiative transfers involving black- body photons. We generalize the Stefan-Boltzmann law assuming that photons can transition between different dimensional spaces, and we can show how for a 3-D/4-D interface, one can only have zero, or net positive, transfer of radiative energy into the black hole. We find that we can predict the temperature just inside the event horizon, on the 4-D side, given the mass, or radius, of the black hole. For an isolated black hole with no radiative heat inflow, we will assume that the temperature, on the outside, is the CMB temperature, T2 = 2.725 K. We take into account the full complement of radiative energy, which for a black body will consist of internal energy density, radiative pressure, and entropy density. It is specifically the entropy density which is responsible for the heat flowing in. We also generalize the Young- Laplace equation for a 4-D/3-D interface. We derive an expression for the surface tension, and prove that it is necessarily positive, and finite, for a 4-D/3-D membrane. This is important as it will lead to an inherently positively curved object, which a black hole is. With this surface tension, we can determine the work needed to expand the black hole. We give two formulations, one involving the surface tension directly, and the other involving the coefficient of surface tension. Because two surfaces are expanding, the 4-D and the 3-D surfaces, there are two radiative contributions to the work done, one positive, which assists expansion. The other is negative, which will resist an increase in volume. The 4-D side promotes expansion whereas the 3-D side hinders it. At the surface itself, we also have gravity, which is the major contribution to the finite surface tension in almost all situations, which we calculate in the second paper. The surface tension depends not only on the size, or mass, of the black hole, but also on the outside surface temperature, quantities which are accessible observationally. Outside surface temperature will also determine inflow. Finally, we develop a “waterfall model” for a black hole, based on what happens at the event horizon. There we find a sharp discontinuity in temperature upon entering the event horizon, from the 3-D side. This is due to the increased surface area in 4-D space, AR(4) = 2π2R3, versus the 3-D surface area, AR(3) = 4πR2. This leads to much reduced radiative pressures, internal energy densities, and total energy densities just inside the event horizon. All quantities are explicitly calculated in terms of the outside surface temperature, and size of a black hole. Any net radiative heat inflow into the black hole, if it is non-zero, is restricted by the condition that, 0cdQ/dt FR(3), where, FR(3), is the 3-D radiative force applied to the event horizon, pushing it in. We argue throughout this paper that a 3-D/3-D interface would not have the same desirable characteristics as a 4-D/3-D interface. This includes allowing for only zero or net positive heat inflow into the black hole, an inherently positive finite radiative surface tension, much reduced temperatures just inside the event horizon, and limits on inflow.展开更多
By the use of the 3/2 power law presented by Toba combined with the significant wave energy balance equation for wind wave, wind wave growth at a limited fetch is analytically investigated. The new wind wave growth re...By the use of the 3/2 power law presented by Toba combined with the significant wave energy balance equation for wind wave, wind wave growth at a limited fetch is analytically investigated. The new wind wave growth relations (WWGRs) are analytically derived with sheltering coefficient and wind drag coefficient as parameters. The geometrical average of observational values of sheltering coefficient and the arithmetic average of observational values of wind drag coefficient are applied to determine the new WWGRs. Comparisons with existing empirical WWGRs are made.展开更多
The economic reform launched in the People's Republic of China(China) led to a rapid growth in non-state sectors.Various forms of corporate governances and ownerships emerged during the last two decades,especially...The economic reform launched in the People's Republic of China(China) led to a rapid growth in non-state sectors.Various forms of corporate governances and ownerships emerged during the last two decades,especially the Township and Village Enterprises owned by local residents.This article is conducted on the changing labour relations in Chinese Township and Village Enterprises(TVEs) despite their increasing contributions to China's transition from planned economy to market economy,and studies the labour market and the Labour Law to understand the unique labour mobility and to test the relationship between Human Resource Management(HRM) practice and the performance among TVEs.展开更多
The basis of the legal protection of resource security is its relative laws, which have four main characteristics, which are foundational, divergent, comprehensive and of long-term social benefits in view. The coordin...The basis of the legal protection of resource security is its relative laws, which have four main characteristics, which are foundational, divergent, comprehensive and of long-term social benefits in view. The coordination mechanism of the legal protection of resource security with its relative laws meets the needs of the sustainable development of the economy, society and environment. It also facilitates and is facilitated by the modern transformation of the legal system in China, and upholds the legal system as a logically self-perfecting entity. Furthermore, this coordination bears scientific feasibility.展开更多
Non-recursive relations structure-functionality is an exclusive property of the recently introduced concept of boundedness. They provide a leading role of the hierarchy of the functional organization in the evolution ...Non-recursive relations structure-functionality is an exclusive property of the recently introduced concept of boundedness. They provide a leading role of the hierarchy of the functional organization in the evolution of each and every complex system. The novel evolution strategy appears as a counterpart rather than as opponent to the survival of the fittest strategy because the survival of the fittest is more advantageous strategy in a slow varying environment while the novel strategy is more advantageous for a rapidly changing environment. Alongside, the non-recursive relations structure-functionality serves as grounds for coexistence of scaling dependent and scaling independent properties of complex systems.展开更多
文摘This is the first paper in a two part series on black holes. In this work, we concern ourselves with the event horizon. A second follow-up paper will deal with its internal structure. We hypothesize that black holes are 4-dimensional spatial, steady state, self-contained spheres filled with black-body radiation. As such, the event horizon marks the boundary between two adjacent spaces, 4-D and 3-D, and there, we consider the radiative transfers involving black- body photons. We generalize the Stefan-Boltzmann law assuming that photons can transition between different dimensional spaces, and we can show how for a 3-D/4-D interface, one can only have zero, or net positive, transfer of radiative energy into the black hole. We find that we can predict the temperature just inside the event horizon, on the 4-D side, given the mass, or radius, of the black hole. For an isolated black hole with no radiative heat inflow, we will assume that the temperature, on the outside, is the CMB temperature, T2 = 2.725 K. We take into account the full complement of radiative energy, which for a black body will consist of internal energy density, radiative pressure, and entropy density. It is specifically the entropy density which is responsible for the heat flowing in. We also generalize the Young- Laplace equation for a 4-D/3-D interface. We derive an expression for the surface tension, and prove that it is necessarily positive, and finite, for a 4-D/3-D membrane. This is important as it will lead to an inherently positively curved object, which a black hole is. With this surface tension, we can determine the work needed to expand the black hole. We give two formulations, one involving the surface tension directly, and the other involving the coefficient of surface tension. Because two surfaces are expanding, the 4-D and the 3-D surfaces, there are two radiative contributions to the work done, one positive, which assists expansion. The other is negative, which will resist an increase in volume. The 4-D side promotes expansion whereas the 3-D side hinders it. At the surface itself, we also have gravity, which is the major contribution to the finite surface tension in almost all situations, which we calculate in the second paper. The surface tension depends not only on the size, or mass, of the black hole, but also on the outside surface temperature, quantities which are accessible observationally. Outside surface temperature will also determine inflow. Finally, we develop a “waterfall model” for a black hole, based on what happens at the event horizon. There we find a sharp discontinuity in temperature upon entering the event horizon, from the 3-D side. This is due to the increased surface area in 4-D space, AR(4) = 2π2R3, versus the 3-D surface area, AR(3) = 4πR2. This leads to much reduced radiative pressures, internal energy densities, and total energy densities just inside the event horizon. All quantities are explicitly calculated in terms of the outside surface temperature, and size of a black hole. Any net radiative heat inflow into the black hole, if it is non-zero, is restricted by the condition that, 0cdQ/dt FR(3), where, FR(3), is the 3-D radiative force applied to the event horizon, pushing it in. We argue throughout this paper that a 3-D/3-D interface would not have the same desirable characteristics as a 4-D/3-D interface. This includes allowing for only zero or net positive heat inflow into the black hole, an inherently positive finite radiative surface tension, much reduced temperatures just inside the event horizon, and limits on inflow.
基金by the major state basic research program(No.G1999043809)the National Natural Science Foundation of China(No.40076003)the the Excellent Young Teachers Program of Ministry of Education,P.R.China(M.[2001]39)
文摘By the use of the 3/2 power law presented by Toba combined with the significant wave energy balance equation for wind wave, wind wave growth at a limited fetch is analytically investigated. The new wind wave growth relations (WWGRs) are analytically derived with sheltering coefficient and wind drag coefficient as parameters. The geometrical average of observational values of sheltering coefficient and the arithmetic average of observational values of wind drag coefficient are applied to determine the new WWGRs. Comparisons with existing empirical WWGRs are made.
文摘The economic reform launched in the People's Republic of China(China) led to a rapid growth in non-state sectors.Various forms of corporate governances and ownerships emerged during the last two decades,especially the Township and Village Enterprises owned by local residents.This article is conducted on the changing labour relations in Chinese Township and Village Enterprises(TVEs) despite their increasing contributions to China's transition from planned economy to market economy,and studies the labour market and the Labour Law to understand the unique labour mobility and to test the relationship between Human Resource Management(HRM) practice and the performance among TVEs.
文摘The basis of the legal protection of resource security is its relative laws, which have four main characteristics, which are foundational, divergent, comprehensive and of long-term social benefits in view. The coordination mechanism of the legal protection of resource security with its relative laws meets the needs of the sustainable development of the economy, society and environment. It also facilitates and is facilitated by the modern transformation of the legal system in China, and upholds the legal system as a logically self-perfecting entity. Furthermore, this coordination bears scientific feasibility.
文摘Non-recursive relations structure-functionality is an exclusive property of the recently introduced concept of boundedness. They provide a leading role of the hierarchy of the functional organization in the evolution of each and every complex system. The novel evolution strategy appears as a counterpart rather than as opponent to the survival of the fittest strategy because the survival of the fittest is more advantageous strategy in a slow varying environment while the novel strategy is more advantageous for a rapidly changing environment. Alongside, the non-recursive relations structure-functionality serves as grounds for coexistence of scaling dependent and scaling independent properties of complex systems.