期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Cross-Modal Relation-Aware Networks for Fake News Detection
1
作者 Hui Yu Jinguang Wang 《Journal of New Media》 2022年第1期13-26,共14页
With the speedy development of communication Internet and the widespread use of social multimedia,so many creators have published posts on social multimedia platforms that fake news detection has already been a challe... With the speedy development of communication Internet and the widespread use of social multimedia,so many creators have published posts on social multimedia platforms that fake news detection has already been a challenging task.Although some works use deep learning methods to capture visual and textual information of posts,most existingmethods cannot explicitly model the binary relations among image regions or text tokens to mine the global relation information in a modality deeply such as image or text.Moreover,they cannot fully exploit the supplementary cross-modal information,including image and text relations,to supplement and enrich each modality.In order to address these problems,in this paper,we propose an innovative end-to-end Cross-modal Relation-aware Networks(CRAN),which exploits jointly models the visual and textual information with their corresponding relations in a unified framework.(1)To capture the global structural relations in a modality,we design a global relation-aware network to explicitly model the relation-aware semantics of the fragment features in the target modality from a global scope perspective.(2)To effectively fuse cross-modal information,we propose a cross-modal co-attention network module for multi-modal information fusion,which utilizes the intra-modality relationships and inter-modality relationship jointly among image regions and textual words to replenish and heighten each other.Extensive experiments on two public real-world datasets demonstrate the superior performance of CRAN compared with other state-of-the-art baseline algorithms. 展开更多
关键词 Fake news detection relation-aware networks multi-modal fusion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部