期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A UNIVERSAL APPROACH FOR CONTINUOUS OR DISCRETE NONLINEAR PROGRAMMINGS WITH MULTIPLE VARIABLES AND CONSTRAINTS
1
作者 孙焕纯 王跃芳 柴山 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第10期1284-1292,共9页
A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with resp... A universal numerical approach for nonlinear mathematic programming problems is presented with an application of ratios of first-order differentials/differences of objective functions to constraint functions with respect to design variables. This approach can be efficiently used to solve continuous and, in particular, discrete programmings with arbitrary design variables and constraints. As a search method, this approach requires only computations of the functions and their partial derivatives or differences with respect to design variables, rather than any solution of mathematic equations. The present approach has been applied on many numerical examples as well as on some classical operational problems such as one-dimensional and two-dimensional knap-sack problems, one-dimensional and two-dimensional resource-distribution problems, problems of working reliability of composite systems and loading problems of machine, and more efficient and reliable solutions are obtained than traditional methods. The present approach can be used without limitation of modeling scales of the problem. Optimum solutions can be guaranteed as long as the objective function, constraint functions and their First-order derivatives/differences exist in the feasible domain or feasible set. There are no failures of convergence and instability when this approach is adopted. 展开更多
关键词 continuous or discrete nonlinear programming search algorithm relative differential/difference method
下载PDF
相对微分/差分法搜索非线性规划极值点的充分条件 被引量:2
2
作者 孙焕纯 王跃方 柴山 《大连理工大学学报》 EI CAS CSCD 北大核心 2006年第4期478-483,共6页
求解非线性规划有两个问题:一是采用搜索算法时如何判断搜索的结束,二是如何确定所得到的解是局部最优解还是全局最优解.过去一般基于容许误差法解决第一个问题,而第二个问题迄今没有解决.为此给出了两个极值点的充分条件,这是解决第一... 求解非线性规划有两个问题:一是采用搜索算法时如何判断搜索的结束,二是如何确定所得到的解是局部最优解还是全局最优解.过去一般基于容许误差法解决第一个问题,而第二个问题迄今没有解决.为此给出了两个极值点的充分条件,这是解决第一个问题的一个新方法;给出了判断局部极值点和全局极值点的方法,解决了第二个问题.应用相对微分/差分法解连续和离散非线性规划,在搜索过程中一旦满足了两个充分条件之一,就达到了极值点.根据搜索方向很容易确定极值点是极大点还是极小点.算例表明这两个充分条件对结束搜索有着实用意义. 展开更多
关键词 极值点 充分条件 非线性规划 离散规划 相对微分/差分法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部