The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative re...The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.展开更多
In recent years,convolutional neural networks(CNNs)have demonstrated their effectiveness in predicting bulk parameters,such as effective diffusion,directly from pore-space geometries.CNNs offer significant computation...In recent years,convolutional neural networks(CNNs)have demonstrated their effectiveness in predicting bulk parameters,such as effective diffusion,directly from pore-space geometries.CNNs offer significant computational advantages over traditional methods,making them particularly appealing.However,the current literature primarily focuses on fully saturated porous media,while the partially saturated case is also of high interest for various applications.Partially saturated conditions present more complex geometries for diffusive transport,making the prediction task more challenging.Traditional CNNs tend to lose robustness and accuracy with lower saturation rates.In this paper,we overcome this limitation by introducing a CNN,which conveniently fuses diffusion prediction and a well-established morphological model that describes phase distributions in partially saturated porous media.We demonstrate the ability of our CNN to perform accurate predictions of relative diffusion directly from full pore-space geometries.Finally,we compare our predictions with well-established relations such as the one by Millington–Quirk.展开更多
BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between ap...BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between apparent diffusion coefficient changes with ischemia time, particularly relative apparent diffusion coefficient and tissue pathological changes remains controversial. OBJECTIVE: To explore the correlation between apparent diffusion coefficient changes and pathologic changes in hyperacute cerebral infarction. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment of neuroimaging. The study was performed at the Laboratory of Radiology Department, Longgang Central Hospital of Shenzhen from October 2007 to October 2008. MATERIALS: Magnetic resonance scanner was purchased from Philips Medical Systems, Best, the Netherlands. METHODS: A total of 42 healthy, adult, New Zealand rabbits were randomly assigned into sham-operation, ischemia 0.5-, 1-, 2-, 3-, 4-, and 6-hour groups, with six animals in each group. Local cerebral ischemia model was established by right middle cerebral artery occlusion, and cranial MRI scanning and pathologic observation were performed, respectively, at 0.5, 1,2, 3, 4, and 6 hours following ischemia. The middle cerebral artery of sham-operation group was only exposed, but not occluded. Images at the above-mentioned time points were also collected. MAIN OUTCOME MEASURES: Apparent diffusion coefficient and relative apparent diffusion coefficient values of abnormal signal on diffusion-weighted imaging were calculated and compared with pathological changes in the ischemic region. RESULTS: No abnormal diffusion-weighted imaging signals or pathological changes were observed in the sham-operation group. Abnormal signal intensity on diffusion-weighted imaging was first observed in the 0.5-hour group. Apparent diffusion coefficient and relative apparent diffusion coefficient values decreased in all middle cerebral artery occlusion rabbits and reached lowest levels at 3 hours, followed by a gradual increase. The right ischemic basal ganglia region with high signal intensity on diffusion-weighted imaging extended with increasing time of occlusion, and the pathologic outcome corresponded with MRI changes. CONCLUSION: Relative apparent diffusion coefficient values changed regularly with ischemia time and displayed good correspondence to pathological manifestations.展开更多
The symptoms of autism spectrum disorder(ASD) have been hypothesized to be caused by changes in brain connectivity. From the clinical perspective, the‘‘disconnectivity'' hypothesis has been used to explain chara...The symptoms of autism spectrum disorder(ASD) have been hypothesized to be caused by changes in brain connectivity. From the clinical perspective, the‘‘disconnectivity'' hypothesis has been used to explain characteristic impairments in ‘‘socio-emotional'' function.Therefore, in this study we compared the facial emotional recognition(FER) feature and the integrity of socialemotional-related white-matter tracts between children and adolescents with high-functioning ASD(HFA) and their typically developing(TD) counterparts. The correlation between the two factors was explored to find out if impairment of the white-matter tracts is the neural basis of social-emotional disorders. Compared with the TD group,FER was significantly impaired and the fractional anisotropy value of the right cingulate fasciculus was increased in the HFA group(P / 0.01). In conclusion, the FER function of children and adolescents with HFA was impaired and the microstructure of the cingulate fasciculus had abnormalities.展开更多
Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated...Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz展开更多
文摘The behaviour of relative diffusion theory and Gifford’s random-force theory for long-range atmospheric diffusion is examined. When a puff scale is smaller than the Lagrangian length scale, √2KTL, an accelerative relative diffusion region exists, i.e., σy∝ t 3/2. While the puff diffusion enters a two-dimensional turbulence region, in which the diffusion scale is larger than 500 km, or time scale is larger than 1 day, divergence and convergence are main cause of horizontal diffusion. Between the two above-mentioned regimes, diffusion deviation is given by σy = √2KT. The large-scale horizontal relative diffusion parameters were obtained by analyzing the data of radioactive cloud width collected in air nuclear tests. Key words Tropospheric and lower stratospheric diffusion - Relative diffusion - Large scale turbulence - Nuclear explosion clouds This work is sponsored by the National Natural Science Foundation of China under Grant No. 49505064.The author would like to thank Prof. Chen Jiayi Department of Geophysics of Peking University and Dr. Cai Xiaoming School of Geography and Environmental Sciences of Birmingham University for their helpful discussions.
基金supported by the DFG Research Training Group 2339 Interfaces,Complex Structures,and Singular LimitsN.Ray was supported by the DFG Research Training Group 2339 Interfaces,Complex StructuresSingular Limits and the DFG Research Unit 2179 MadSoil.F.Frank and F.Woller received support from the Competence Network for Scientific High Performance Computing in Bavaria(KONWIHR).
文摘In recent years,convolutional neural networks(CNNs)have demonstrated their effectiveness in predicting bulk parameters,such as effective diffusion,directly from pore-space geometries.CNNs offer significant computational advantages over traditional methods,making them particularly appealing.However,the current literature primarily focuses on fully saturated porous media,while the partially saturated case is also of high interest for various applications.Partially saturated conditions present more complex geometries for diffusive transport,making the prediction task more challenging.Traditional CNNs tend to lose robustness and accuracy with lower saturation rates.In this paper,we overcome this limitation by introducing a CNN,which conveniently fuses diffusion prediction and a well-established morphological model that describes phase distributions in partially saturated porous media.We demonstrate the ability of our CNN to perform accurate predictions of relative diffusion directly from full pore-space geometries.Finally,we compare our predictions with well-established relations such as the one by Millington–Quirk.
基金Supported by:the Key Program of Shenzhen Health Bureau,No.200605
文摘BACKGROUND: Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement, it has particular advantages for early diagnosis of cerebral infarction. However, the relationship between apparent diffusion coefficient changes with ischemia time, particularly relative apparent diffusion coefficient and tissue pathological changes remains controversial. OBJECTIVE: To explore the correlation between apparent diffusion coefficient changes and pathologic changes in hyperacute cerebral infarction. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment of neuroimaging. The study was performed at the Laboratory of Radiology Department, Longgang Central Hospital of Shenzhen from October 2007 to October 2008. MATERIALS: Magnetic resonance scanner was purchased from Philips Medical Systems, Best, the Netherlands. METHODS: A total of 42 healthy, adult, New Zealand rabbits were randomly assigned into sham-operation, ischemia 0.5-, 1-, 2-, 3-, 4-, and 6-hour groups, with six animals in each group. Local cerebral ischemia model was established by right middle cerebral artery occlusion, and cranial MRI scanning and pathologic observation were performed, respectively, at 0.5, 1,2, 3, 4, and 6 hours following ischemia. The middle cerebral artery of sham-operation group was only exposed, but not occluded. Images at the above-mentioned time points were also collected. MAIN OUTCOME MEASURES: Apparent diffusion coefficient and relative apparent diffusion coefficient values of abnormal signal on diffusion-weighted imaging were calculated and compared with pathological changes in the ischemic region. RESULTS: No abnormal diffusion-weighted imaging signals or pathological changes were observed in the sham-operation group. Abnormal signal intensity on diffusion-weighted imaging was first observed in the 0.5-hour group. Apparent diffusion coefficient and relative apparent diffusion coefficient values decreased in all middle cerebral artery occlusion rabbits and reached lowest levels at 3 hours, followed by a gradual increase. The right ischemic basal ganglia region with high signal intensity on diffusion-weighted imaging extended with increasing time of occlusion, and the pathologic outcome corresponded with MRI changes. CONCLUSION: Relative apparent diffusion coefficient values changed regularly with ischemia time and displayed good correspondence to pathological manifestations.
基金supported by The National Key Research and Development Program of China (2016YFC1306200)the National Natural Science Foundation of China (91132750)+1 种基金Major Projects of the National Social Science Foundation of China (14ZDB161)the Key Research and Development Program of Jiangsu Province, China (BE2016616)
文摘The symptoms of autism spectrum disorder(ASD) have been hypothesized to be caused by changes in brain connectivity. From the clinical perspective, the‘‘disconnectivity'' hypothesis has been used to explain characteristic impairments in ‘‘socio-emotional'' function.Therefore, in this study we compared the facial emotional recognition(FER) feature and the integrity of socialemotional-related white-matter tracts between children and adolescents with high-functioning ASD(HFA) and their typically developing(TD) counterparts. The correlation between the two factors was explored to find out if impairment of the white-matter tracts is the neural basis of social-emotional disorders. Compared with the TD group,FER was significantly impaired and the fractional anisotropy value of the right cingulate fasciculus was increased in the HFA group(P / 0.01). In conclusion, the FER function of children and adolescents with HFA was impaired and the microstructure of the cingulate fasciculus had abnormalities.
文摘Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz