期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate
1
作者 Research Notes H.Suto Tohoku University, Aoba-Hachiman 5-4-12, Sendai, 980-0871, Japan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期579-580,共2页
Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elssticity up to 111 GPa ... Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elssticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant. 展开更多
关键词 high Relation between modulus of elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate SIC
下载PDF
Brine-freeze-thaw Durability and Crack Density Model of Concrete in Salt Lake Region 被引量:5
2
作者 GONG Wei YU Hongfa +1 位作者 MA Haiyan HAN Wenliang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期561-570,共10页
The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performanc... The brine-freeze-thaw durability (defined as the durability under freeze-thaw cycles in Qinghai salt lake brine) of concrete (ordinary Portland cement concrete (OPC), high performance concrete (HPC-a), high performance concrete with steel fiber (HPC-b), and high performance concrete with high Young's modulus polyethylene fiber (HPC-c)) was systematically investigated by the relative dynamic elastic modulus, the relative mass, the appearance, the scanning electron microscopy, and the X-ray diffraction. In addition, the low-temperature physical and chemical corrosion mechanism and a crack density model after the modified relative dynamic elastic modulus being taken into consideration were proposed. The results show that the deterioration of OPC is the severest, followed by HPC-a, HPC-c and HPC-b. The admixture or the fiber is mixed into concrete, which can improve the brine-freeze-thaw durability of concrete. The critical mass growth of the failure of concrete is 3.7%. The cause of the deterioration of concrete under the brine-freeze-thaw cycles is physical and chemical corrosion, not freezing and thawing. The crack density model can effectively describe the deterioration evolution of concrete. 展开更多
关键词 brine-freeze-thaw durability relative dynamic elastic modulus relative mass micro-analysis modeling
下载PDF
Evaluating Deterioration of Concrete by Sulfate Attack 被引量:3
3
作者 龙广成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期572-576,共5页
Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfat... Effects of factors such as water to cement ratio, fly ash and silica fume on the resistance of concrete to sulfate attack were investigated by dry-wet cycles and immersion method. The index of the resistance to sulfate attack was used to evaluate the deterioration degree of concrete damaged by sulfate. The relationship between the resistance of concrete to sulfate attack and its permeability/porosity were analyzed as well as its responding mechanism. Results show that the depth of sulfate crystal attack from surface to inner of concrete can be reduced by decreasing w/c and addition of combining fly ash with silica fume. The variation of relative elastic modulus ratio and relative flexural strength ratio of various specimens before and after being subjected to sulfate attack was compared. 展开更多
关键词 sulfate attack STRENGTH relative dynamic elastic modulus PERMEABILITY CONCRETE
下载PDF
Effect of carbonation-drying-wetting on durability of coral aggregate seawater concrete 被引量:2
4
作者 Da Bo Yu Hongfa +3 位作者 Ma Haiyan Dou Xuemei Wu Zhangyu Chen Yan 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期67-74,共8页
Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on... Based on the drying-wetting cycles experiment and the carbonation-drying-wetting cycles experiment for coral aggregate seawater concrete(CASC)with different strength grades,the effects of carbonation-drying-wetting on the durability of CASC are studied with the surface state,mass loss rate,relative dynamic elastic modulus,ultrasonic wave velocity and cube compressive strength as indices.Results show that the mass loss rate of CASC increases gradually with the increase in cycle times in the drying-wetting and carbonation-drying-wetting cycles.The mass loss rate increases relatively slowly at the initial stage but it increases remarkably after 10 cycles.The relative dynamic elastic modulus and ultrasonic wave velocity decrease gradually with the increase in cycle times.After 6 cycles,the decrease rate of the relative dynamic elastic modulus and ultrasonic wave velocity of CASC tends to be flat and the surface is slightly damaged.Compared with the initial 28 d cube compressive strength,the cube compressive strength of CASC decreases by 8.8%to 11.0%.Drying-wetting cycles and carbonation can accelerate seawater erosion on CASC,and drying-wetting cycles result in salting-out and accelerate the destruction of concrete.Therefore,the carbonation-drying-wetting accelerates the destruction of CASC. 展开更多
关键词 coral aggregate seawater concrete drying-wetting cycles carbonation-drying-wetting cycles mass loss rate relative dynamic elastic modulus ultrasound wave velocity
下载PDF
Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions 被引量:3
5
作者 熊良宵 虞利军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1096-1103,共8页
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas... To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution. 展开更多
关键词 cement mortar mechanical properties relative dynamic elastic modulus compressive strength
下载PDF
Durability of Concrete with Different Improvement Measures and Its Ser-vice Life Prediction in Island and Reef Environment
6
作者 GONG Wei YU Hong-fa +2 位作者 MA Hai-yan WANG Nan ZHU Hai-wei 《China Ocean Engineering》 SCIE EI CSCD 2022年第6期947-958,共12页
To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were us... To solve the durability of island and reef concrete engineering in the harsh environment of high temperature,high salt,high humidity and windy,the strength grade of concrete and the type of corrosion inhibitor were used as the influence factors,while the relative dynamic elastic modulus was used as the evaluation index.In addition,the law and time variability of the deterioration of concrete,the size effect,environmental similarity and the service life model were studied.The results showed that improving the strength grade of concrete could improve the durability of concrete,and corrosion inhibitor could slightly improve the durability of concrete.Time-varying law of the deterioration of concrete conformed to the univariate quadratic polynomial.Combined with the concrete damage equivalent theory,a size effect model based on the relative dynamic elastic modulus was proposed and verified,and the size effect coefficient was also given.An environmental similarity model between simulated and practical island and reef environment was proposed.Combined with the reliability theory and the first order second moment method,a new service life model of concrete structure was proposed.The authors were convinced that the research will be advantageous to researchers. 展开更多
关键词 island and reef environment relative dynamic elastic modulus size effect environmental similarity service life model
下载PDF
Freeze-thaw Resistance of Concrete in Seawater 被引量:1
7
作者 SHUI Z H XU H G ZHAN B J 《武汉理工大学学报》 CAS CSCD 北大核心 2010年第17期108-111,共4页
The effect of freeze-thaw cycles in seawater on the performance of concrete was studied in this paper. Concrete samples with different water binder ratio and different component were prepared,and were then put into fr... The effect of freeze-thaw cycles in seawater on the performance of concrete was studied in this paper. Concrete samples with different water binder ratio and different component were prepared,and were then put into fresh water and synthesized seawater. After the experiments of freeze-thaw cycles,the mass loss,relative dynamic elastic modulus (RDEM) and compressive strength of each sample were tested. The results obtained reveal that with the increase of the water binder ratio,the resistance ability of freeze-thaw impact in seawater of concrete decrease dramatically. When the concrete contain 15% fly ash and 20% slag,its resistance ability to the freeze-thaw impact in seawater is the optimal. Compared to the seawater corrosion,the impact of freeze-thaw cycles to the properties of concrete is severer. 展开更多
关键词 freeze-thaw damage seawater mass loss relative dynamic elastic modulus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部