期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Gly-LysPred: Identification of Lysine Glycation Sites in Protein Using Position Relative Features and Statistical Moments via Chou’s 5 Step Rule
1
作者 Shaheena Khanum Muhammad Adeel Ashraf +5 位作者 Asim Karim Bilal Shoaib Muhammad Adnan Khan Rizwan Ali Naqvi Kamran Siddique Mohammed Alswaitti 《Computers, Materials & Continua》 SCIE EI 2021年第2期2165-2181,共17页
Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as... Glycation is a non-enzymatic post-translational modification which assigns sugar molecule and residues to a peptide.It is a clinically important attribute to numerous age-related,metabolic,and chronic diseases such as diabetes,Alzheimer’s,renal failure,etc.Identification of a non-enzymatic reaction are quite challenging in research.Manual identification in labs is a very costly and timeconsuming process.In this research,we developed an accurate,valid,and a robust model named as Gly-LysPred to differentiate the glycated sites from non-glycated sites.Comprehensive techniques using position relative features are used for feature extraction.An algorithm named as a random forest with some preprocessing techniques and feature engineering techniques was developed to train a computational model.Various types of testing techniques such as self-consistency testing,jackknife testing,and cross-validation testing are used to evaluate the model.The overall model’s accuracy was accomplished through self-consistency,jackknife,and cross-validation testing 100%,99.92%,and 99.88%with MCC 1.00,0.99,and 0.997 respectively.In this regard,a user-friendly webserver is also urbanized to accumulate the whole procedure.These features vectorization methods suggest that they can play a critical role in other web servers which are developed to classify lysine glycation. 展开更多
关键词 Gly-LysPred PseAAC post-translational modification lysine glycation Chou’s 5 step rule position relative features
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部