Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations u...Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.展开更多
This paper focuses on Gauss principle of least compulsion for relative motion dynamics and derives differential equations of motion from it. Firstly, starting from the dynamic equation of the relative motion of partic...This paper focuses on Gauss principle of least compulsion for relative motion dynamics and derives differential equations of motion from it. Firstly, starting from the dynamic equation of the relative motion of particles, we give the Gauss principle of relative motion dynamics. By constructing a compulsion function of relative motion, we prove that at any instant, its real motion minimizes the compulsion function under Gaussian variation, compared with the possible motions with the same configuration and velocity but different accelerations. Secondly, the formula of acceleration energy and the formula of compulsion function for relative motion are derived because the carried body is rigid and moving in a plane. Thirdly, the Gauss principle we obtained is expressed as Appell, Lagrange, and Nielsen forms in generalized coordinates. Utilizing Gauss principle, the dynamical equations of relative motion are established. Finally, two relative motion examples also verify the results' correctness.展开更多
This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are g...This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.展开更多
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations i...Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.展开更多
This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is...This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.展开更多
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of...Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.展开更多
The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equ...The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.展开更多
Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholo...Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.展开更多
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a...Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a r...As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a rather large disturbance to the attitude of OTV. Steering the nozzle to track the estimated center of mass (ECM) of OTV can reduce but not remove the disturbance due to the difference between the ECM and the practical mass center (PCM) of OTV. The practical propelling direction will change with the internal motion during the propulsion process and attitude control system should be enabled to guarantee that the propelling direction is collinear with the command. Since the structural parameters have changed,which is due to internal motion and fuel consumption,the dynamic model have to be formulated to determine these time-varying parameters and the required attitude of OTV should be determined as well. Modulating attitude quaternion results in quasi Euler angles. Based on the resulting quasi Euler angles,a novel attitude switching control law is introduced to control the variable-mass OTV. Simulation results show that,even in the case of structural asymmetry,control torque matrix asymmetry,attitude disturbance and strong coupling between the channels,the attitude of OTV can be controlled perfectly,and the proposed attitude control law is effective for the variable-mass OTV with swing thruster.展开更多
文摘Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.
基金Supported by the National Natural Science Foundation of China (12272248, 11972241)。
文摘This paper focuses on Gauss principle of least compulsion for relative motion dynamics and derives differential equations of motion from it. Firstly, starting from the dynamic equation of the relative motion of particles, we give the Gauss principle of relative motion dynamics. By constructing a compulsion function of relative motion, we prove that at any instant, its real motion minimizes the compulsion function under Gaussian variation, compared with the possible motions with the same configuration and velocity but different accelerations. Secondly, the formula of acceleration energy and the formula of compulsion function for relative motion are derived because the carried body is rigid and moving in a plane. Thirdly, the Gauss principle we obtained is expressed as Appell, Lagrange, and Nielsen forms in generalized coordinates. Utilizing Gauss principle, the dynamical equations of relative motion are established. Finally, two relative motion examples also verify the results' correctness.
基金supported by the National Natural Science Foundation of China (Grant No 10372053)the Natural Science Foundation of Henan Province,China (Grant Nos 082300410330 and 082300410370)
文摘This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.
文摘Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province,China (Grant No. CXLX12_0720)
文摘Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014 and 61178032)
文摘The Mei symmetry and the Mei conserved quantity of Appell equations in a dynamical system of relative motion with non-Chetaev nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and the criterion of the Mei symmetry,and the expression of the Mei conserved quantity deduced directly from the Mei symmetry for the system are obtained.An example is given to illustrate the application of the results.
文摘Based on the theory of symmetries and conserved quantities, the exact invariants and adiabatic invariants of nonholonomic dynamical system of relative motion are studied. The perturbation to symmetries for the nonholonomic dynamical system of relative motion under small excitation is discussed. The concept of high-order adiabatic invariant is presented, and the form of exact invariants and adiabatic invariants as well as the conditions for their existence are given. Then the corresponding inverse problem is studied.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.
文摘As for orbit transfer vehicle (OTV) with multiple satellites/payloads carried,the release of each payload will bring serious change to the mass center of OTV and the thrust produced by the swing thruster will form a rather large disturbance to the attitude of OTV. Steering the nozzle to track the estimated center of mass (ECM) of OTV can reduce but not remove the disturbance due to the difference between the ECM and the practical mass center (PCM) of OTV. The practical propelling direction will change with the internal motion during the propulsion process and attitude control system should be enabled to guarantee that the propelling direction is collinear with the command. Since the structural parameters have changed,which is due to internal motion and fuel consumption,the dynamic model have to be formulated to determine these time-varying parameters and the required attitude of OTV should be determined as well. Modulating attitude quaternion results in quasi Euler angles. Based on the resulting quasi Euler angles,a novel attitude switching control law is introduced to control the variable-mass OTV. Simulation results show that,even in the case of structural asymmetry,control torque matrix asymmetry,attitude disturbance and strong coupling between the channels,the attitude of OTV can be controlled perfectly,and the proposed attitude control law is effective for the variable-mass OTV with swing thruster.