基于现有永磁磁体的参数,并结合高功率微波器件的优点,设计了一个X波段低磁场相对论返波管振荡器,当引导磁场强度为0.48T、二极管束压和束流分别为530 k V和7.0 k A时,通过粒子模拟软件得到频率9.42GHz、功率1.11GW的模拟微波输出,器件...基于现有永磁磁体的参数,并结合高功率微波器件的优点,设计了一个X波段低磁场相对论返波管振荡器,当引导磁场强度为0.48T、二极管束压和束流分别为530 k V和7.0 k A时,通过粒子模拟软件得到频率9.42GHz、功率1.11GW的模拟微波输出,器件束波转换效率30%。在强流电子束加速器平台上进行实验研究,当二极管电压500k V、电流6.2k A、引导磁场强度0.46T时,得到频率为9.40GHz、功率为900MW、脉宽为32ns的微波输出。该实验结果为低磁场器件实现高功率、高效率微波输出及永磁包装打下了良好的基础。展开更多
Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The ...Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.展开更多
文摘基于现有永磁磁体的参数,并结合高功率微波器件的优点,设计了一个X波段低磁场相对论返波管振荡器,当引导磁场强度为0.48T、二极管束压和束流分别为530 k V和7.0 k A时,通过粒子模拟软件得到频率9.42GHz、功率1.11GW的模拟微波输出,器件束波转换效率30%。在强流电子束加速器平台上进行实验研究,当二极管电压500k V、电流6.2k A、引导磁场强度0.46T时,得到频率为9.40GHz、功率为900MW、脉宽为32ns的微波输出。该实验结果为低磁场器件实现高功率、高效率微波输出及永磁包装打下了良好的基础。
基金supported by the National Natural Science Funds Fund of China under Grant No.11505288Provincial Natural Science Foundation of Hunanscientific effort project of NUDT.
文摘Research progresses on Cherenkov and transit-time high-power microwave(HPM)sources in National University of Defense Technology(NUDT)of China are presented.The research issues are focused on the following aspects.The pulse-shortening phenomenon in O-type Cerenkov HPM devices is suppressed.The compact coaxial relativistic backward-wave oscillators(RBWOs)at low bands are developed.The power efficiency in M-Type HPM tubes without guiding magnetic field increased.The power capacities and power efficiencies in the triaxial klystron amplifier(TKA)and relativistic transit-time oscillator(TTO)at higher frequencies increased.In experiments,some exciting results were obtained.The X-band source generated 2 GW microwave power with a pulse duration of 110 ns in 30 Hz repetition mode.Both L-and P-band compact RBWOs generated over 2 GW microwave power with a power efficiency of over 30%.There is approximately a 75% decline of the volume compared with that of conventional RBWO under the same power capacity conditions.A 1.755 GHz MILO produced 3.1 GW microwave power with power efficiency of 10.4%.A 9.37 GHz TKA produced the 240 MW microwave power with the gain of 34 dB.A 14.3 GHz TTO produced 1 GW microwave power with power efficiency of 20%.