The inner fission barriers of the even-even uranium isotopes from the proton to the neutron drip line are examined using the deformed relativistic Hartree-Bogoliubov theory in continuum.A periodic-like evolution for t...The inner fission barriers of the even-even uranium isotopes from the proton to the neutron drip line are examined using the deformed relativistic Hartree-Bogoliubov theory in continuum.A periodic-like evolution for the ground state shapes is shown with respect to the neutron number,i.e.,spherical shapes at shell closures 126,184,258,and prolate dominated shapes between them.Analogous to the shape evolution,the inner fission barriers also exhibit a periodic-like behavior:peaks at the shell closures and valleys in the mid-shells.The triaxial effect on the inner fission barrier is evaluated using triaxial relativistic mean field calculations combined with a simple BCS method for pairing.When the triaxial correction is included,the inner barrier heights show good consistency with available empirical data.Additionally,the evolution from the proton to the neutron drip line aligns with results from the multi-dimensionally constrained relativistic mean field theory.A flat valley in the fission barrier height is predicted around the neutron-rich nucleus U which may play a role of fission recycling in astrophysical r-process nucleosynthesis.展开更多
We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail t...We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail the properties of even-even Ca isotopes due to the appearance of giant halos in neutron rich Ca nuclei near the neutron drip line. The RCHB theory is able to reproduce the experimental binding energiesE b and two neutron separation energiesS 2n very well. The predicted neutron drip line nuclei are28O,72Ca,98Ni,136Zr,176Sn, and266Pb. Halo and giant halo properties predicted in Ca isotopes withA>60 are investigated in detail through analysis of two neutron separation energies, nucleon density distributions, single particle energy levels, and the occupation probabilities of energy levels including continuum states. The spin-orbit splitting and the diffuseness of nuclear potential in these Ca isotopes, as well as the neighboring lighter isotopes in the drip line Ca region and find certain possibilities of giant halo nuclei in the Ne?Na?Mg drip line nuclei are also studied.展开更多
The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the bindin...The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the binding energies of 9035 nuclei,the KRR method achieves a root-mean-square deviation of 0.96 MeV,and the KRRoe method remarkably reduces the deviation to 0.17 MeV.By investigating the shell effects,one-nucleon and twonucleon separation energies,odd-even mass differences,and empirical proton-neutron interactions extracted from the learned binding energies,the ability of the machine learning tool to grasp the known physics is discussed.It is found that the shell effects,evolutions of nucleon separation energies,and empirical proton-neutron interactions are well reproduced by both the KRR and KRRoe methods,although the odd-even mass differences can only be reproduced by the KRRoe method.展开更多
A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to co...A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to consider the triaxial deformation,the deformed potentials are expanded in terms of spherical harmonic functions in the coordinate space.In order to take the pairing correlations into account and treat the continuum properly,by using the Dirac Woods–Saxon basis,which has correct asymptotic behavior,the relativistic Hartree–Bogoliubov equation with triaxial deformation is solved.The formalism of triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is presented.Taking an axially deformed nucleus24Ne and a triaxially deformed nucleus76Ge as examples,the numerical checks are performed.A weakly bound nucleus112Ge is taken as an example to carry out the necessary converge checks for the numerical parameters.In addition,the ground-state properties of even–even germanium isotopes are investigated.The evolutions of two-neutron separation energy,deformation,root-mean-square radii and density distribution with mass number are analyzed.The comparison between the calculations from the relativistic Hartree–Bogoliubov theory based on harmonic-oscillator basis and the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is performed.It is found that the neutron drip line is extended from114Ge to118Ge in the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis.展开更多
基金Supported by the Natural Science Foundation of Henan Province,China(242300421156,202300410480)the National Natural Science Foundation of China(12141501,U2032141,11935003)+1 种基金the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2023ZX03)the Super Computing Center of Beijing Normal University,and High-performance Computing Platform of Peking University。
文摘The inner fission barriers of the even-even uranium isotopes from the proton to the neutron drip line are examined using the deformed relativistic Hartree-Bogoliubov theory in continuum.A periodic-like evolution for the ground state shapes is shown with respect to the neutron number,i.e.,spherical shapes at shell closures 126,184,258,and prolate dominated shapes between them.Analogous to the shape evolution,the inner fission barriers also exhibit a periodic-like behavior:peaks at the shell closures and valleys in the mid-shells.The triaxial effect on the inner fission barrier is evaluated using triaxial relativistic mean field calculations combined with a simple BCS method for pairing.When the triaxial correction is included,the inner barrier heights show good consistency with available empirical data.Additionally,the evolution from the proton to the neutron drip line aligns with results from the multi-dimensionally constrained relativistic mean field theory.A flat valley in the fission barrier height is predicted around the neutron-rich nucleus U which may play a role of fission recycling in astrophysical r-process nucleosynthesis.
基金the Major State Basic Research Development Program Under Contract Number G2000077407the National Natural Science Foundation of China (Grant Nos. 10025522, 10221003, 10047001, and 19935030)
文摘We study the proton magic O, Ca, Ni, Zr, Sn, and Pb isotope chains from the proton drip line to the neutron drip line with the relativistic continuum Hartree-Bogoliubov (RCHB) theory. Particulary, we study in detail the properties of even-even Ca isotopes due to the appearance of giant halos in neutron rich Ca nuclei near the neutron drip line. The RCHB theory is able to reproduce the experimental binding energiesE b and two neutron separation energiesS 2n very well. The predicted neutron drip line nuclei are28O,72Ca,98Ni,136Zr,176Sn, and266Pb. Halo and giant halo properties predicted in Ca isotopes withA>60 are investigated in detail through analysis of two neutron separation energies, nucleon density distributions, single particle energy levels, and the occupation probabilities of energy levels including continuum states. The spin-orbit splitting and the diffuseness of nuclear potential in these Ca isotopes, as well as the neighboring lighter isotopes in the drip line Ca region and find certain possibilities of giant halo nuclei in the Ne?Na?Mg drip line nuclei are also studied.
基金Supported by the National Natural Science Foundation of China(11875075,11935003,11975031,12141501,12070131001)the China Postdoctoral Science Foundation under(2021M700256)+1 种基金the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2023ZX01,NPT2023KFY02)the President’s Undergraduate Research Fellowship(PURF)of Peking University
文摘The kernel ridge regression(KRR)method and its extension with odd-even effects(KRRoe)are used to learn the nuclear mass table obtained by the relativistic continuum Hartree-Bogoliubov theory.With respect to the binding energies of 9035 nuclei,the KRR method achieves a root-mean-square deviation of 0.96 MeV,and the KRRoe method remarkably reduces the deviation to 0.17 MeV.By investigating the shell effects,one-nucleon and twonucleon separation energies,odd-even mass differences,and empirical proton-neutron interactions extracted from the learned binding energies,the ability of the machine learning tool to grasp the known physics is discussed.It is found that the shell effects,evolutions of nucleon separation energies,and empirical proton-neutron interactions are well reproduced by both the KRR and KRRoe methods,although the odd-even mass differences can only be reproduced by the KRRoe method.
基金the Sichuan Normal University for financial support(No.341813001)。
文摘A triaxially deformed relativistic Hartree–Bogoliubov theory in the Woods–Saxon basis is developed with the aim of treating the triaxial deformation,pairing correlations and continuum in a unified way.In order to consider the triaxial deformation,the deformed potentials are expanded in terms of spherical harmonic functions in the coordinate space.In order to take the pairing correlations into account and treat the continuum properly,by using the Dirac Woods–Saxon basis,which has correct asymptotic behavior,the relativistic Hartree–Bogoliubov equation with triaxial deformation is solved.The formalism of triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is presented.Taking an axially deformed nucleus24Ne and a triaxially deformed nucleus76Ge as examples,the numerical checks are performed.A weakly bound nucleus112Ge is taken as an example to carry out the necessary converge checks for the numerical parameters.In addition,the ground-state properties of even–even germanium isotopes are investigated.The evolutions of two-neutron separation energy,deformation,root-mean-square radii and density distribution with mass number are analyzed.The comparison between the calculations from the relativistic Hartree–Bogoliubov theory based on harmonic-oscillator basis and the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis is performed.It is found that the neutron drip line is extended from114Ge to118Ge in the triaxially deformed relativistic Hartree–Bogoliubov theory in Woods–Saxon basis.