NASA spacecrafts has suffered from three anomalies. The Pioneers spacecrafts were decelerated, and their spin when not disturbed, was declining. On the other hand, fly-bys for gravity assists, appeared with extra spee...NASA spacecrafts has suffered from three anomalies. The Pioneers spacecrafts were decelerated, and their spin when not disturbed, was declining. On the other hand, fly-bys for gravity assists, appeared with extra speeds, relative to infinity. The Pioneers and fly-by anomalies are given now exact general relativistic full general solutions, in a rotating expanding Universe. We cite new evidence on the rotation of the Universe. Our solution seems to be the only one that solves the three anomalies.展开更多
The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring...The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.展开更多
The harmonic condition is applied to the motion of galaxies in relativistic cosmology. For the material universe we consider that the average distribution of matter on the large scale in the universe is homogenous and...The harmonic condition is applied to the motion of galaxies in relativistic cosmology. For the material universe we consider that the average distribution of matter on the large scale in the universe is homogenous and isotropic, but within each small region individual galaxies can have large or small masses. Each galaxy moves according to the laws of motion determined by the field equations of gravitation for the average distribution of matter in the whole universe. Transformations between the isotropic, the co-moving, theRobertson-Walker and the standard system of coordinates can be derived by using the harmonic condition.展开更多
Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae....Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical anal- ysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.展开更多
A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric a...A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric and asymmetric image theory to this thick 3D shell produces a ring in the 2D map of intensity and a characteristic “U” shape in the case of 1D cut of the intensity. A comparison of such a ring originating from a superbubble is made with the Einstein’s ring. A Taylor approximation of order 10 for the angular diameter distance is derived in order to deal with high values of the redshift.展开更多
We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible...We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters H<sub>0</sub> and Ω<sub>M</sub> . A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the mini-max approximation.展开更多
We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long ga...We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long gamma-ray bursts(GRBs) and its combination with recent Type Ia supernovae data(Union2). Our statistical analysis shows a weak but consistent direction dependence in both the data sets.The analysis also indicates a non-Gaussian nature of errors in both data sets.展开更多
We review the distance modulus in twelve different cosmologies: the ΛCDM model, the wCDM model, the Cardassian model, the flat case, the <i>ø</i>CDM cosmology, the Einstein—De Sitter model, the modi...We review the distance modulus in twelve different cosmologies: the ΛCDM model, the wCDM model, the Cardassian model, the flat case, the <i>ø</i>CDM cosmology, the Einstein—De Sitter model, the modified Einstein—De Sitter model, the simple GR model, the flat expanding model, the Milne model, the plasma model and the modified tired light model. The above distance moduli are processed for three different compilations of supernovae and a supernovae + GRBs compilation: Union 2.1, JLA, the Pantheon and Union 2.1 + 59 GRBs. For each of the 48 analysed cases we report the relative cosmological parameters, the chi-square, the reduced chi-square, the AIC and the <i>Q</i> parameter. The angular distance as function of the redshift for five cosmologies is reported in the framework of the minimax approximation.展开更多
By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spec...By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spectrum fitting package UZySS, these spectra are reduced with single stellar population models and optimal age information from our selected sample is derived. With the decreasing age-redshift relation, four new observational H(z) data (OHD) points are obtained, which are H(z) = 69.0 ± 19.6 km s^-1 Mpc^-1 at z = 0.07, H(z) = 68.6± 26.2 km s^-1 Mpc^-1 at z = 0.12, H(z)=72.9 ± 29.6 km s^-1 Mpc^-1 at z = 0.2 and H(z)=88.8 ± 36.6 km s^-1 Mpc^-1 at z = 0.28, respectively. Combined with 21 other available OHD data points, the performance of the constraint on both flat and non-flat ACDM models is presented.展开更多
In this paper,we use three different kinds of observational data,including 130 strong gravitational lensing(SGL)systems,type Ia supernovae(SNeIa:Pantheon and Union2.1)and 31 Hubble parameter data points(H(z))from cosm...In this paper,we use three different kinds of observational data,including 130 strong gravitational lensing(SGL)systems,type Ia supernovae(SNeIa:Pantheon and Union2.1)and 31 Hubble parameter data points(H(z))from cosmic chronometers to constrain the phenomenological model(ρ_(x)∝ρ_(m)a^(ξ)).By combining these three kinds of data(Union2.1+SGL+H(z)),we get the parameter value at the confidence interval of 2σ,Ω_(X,0)=0.69±0.34,ω_(x)=−1.24±0.61,ξ=3.8±3.9 and H_(0)=70.22±0.86 kms^(−1) Mpc^(−1).According to our results,we find that theΛCDM model is still the model which is in best agreement with the observational data at present,and the coincidence problem is not alleviated.In addition,the Ω_(X) and Ω_(m) have the same order of magnitude in 0<z<1.26.Finally,we obtain the transition redshift z_(T)=0.645.If the transition occurs in z>0.645,it is necessary to introduce the dark energy interacting with dark matter.展开更多
A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time ...A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time duration of gamma-ray burst (GRB). A random process based on the ratio of two truncated lognormal distributions for luminosity and luminosity distance allows to derive the statistical distribution for time duration of GRBs. The high velocities involved in the first phase of expansion of a SN require a relativistic treatment. The circumstellar medium is assumed to follow a density profile of Plummer type with eta = 6. A series solution for the relativistic flow of kinetic energy allows to derive in a numerical way the duration time for GRBs. Here we analyze two cosmologies: the standard cosmology and the plasma cosmology.展开更多
In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and i...In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and implies the inconclusiveness of so-called “relativistic physics”. This work presents new results of principal significance for the foundations of physics and practical results for high energy physics, deep space astrophysics, and cosmology as well. The entire exposition is done within the formalism of the Lorentz <em>SL</em>(2<em>C</em>) group acting via isometries on <strong>real 3-dimensional Lobachevskian (hyperbolic) spaces</strong> <em>L</em><sup>3</sup> regarded as quotients <span style="white-space:nowrap;"><em>SL</em>(2<em>C</em>)/<em>SU</em>(2)</span>. We show via direct calculations that both ESR and BSR are parametric maps from Lobachevskian into Euclidean space, namely a <strong>gnomonic</strong> (central) map in the case of ESR, and a<strong> stereographic </strong>map in the case of BSR. Such an identification allows us to link these maps to relevant models of Lobachevskian geometry. Thus, we identify ESR as the physical realization of the Beltrami-Klein (non-conformal) model, and BSR as the physical realization of the Poincare (conformal) model of Lobachevskian geometry. Although we focus our discussion on ball models of Lobachevskian geometry, our method is quite general, and for instance, may be applied to the half-space model of Lobachevskian geometry with appropriate “Lorentz group” acting via isometries on (positive) half space, resulting yet in another “special relativity” isomorphic with ESR and BSR. By using the notion of a<strong> homotopy</strong> of maps, the identification of “special relativities” as maps from Lobachevskian into Euclidean space allows us to justify the existence of an uncountable infinity of hybrid “special relativities” and consequently an uncountable infinity of “relativistic physics” built upon them. This is another new result in physics and it states that so called “relativistic physics” is unique only up to a homotopy. Finally, we show that “paradoxes” of “special relativities” in either ESR or BSR are simply common distortions of maps between non-isometric spaces. The entire exposition is kept at elementary level accessible to majority of students in physics and/or engineering.展开更多
We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-...We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.展开更多
We investigated some Friedmann-Lemaître-Robertson-Walker(FLRW)cosmological models in the context of metric-affine F(R,Q)gravity,as proposed in[arXiv:1205.5266v6].Here,R and Q are the curvature and nonmetricity sc...We investigated some Friedmann-Lemaître-Robertson-Walker(FLRW)cosmological models in the context of metric-affine F(R,Q)gravity,as proposed in[arXiv:1205.5266v6].Here,R and Q are the curvature and nonmetricity scalars using non-special connections,respectively.We obtained the modified field equations using a flat FLRW metric.We then found a connection between the Hubble constant H_(0),density parameter Ω_(m0),and other model parameters in two different situations involving scalars u and w.Next,we used new observational datasets,such as the cosmic chronometer(CC)Hubble and Pantheon SNe Ia datasets,to determine the optimal model parameter values through a Markov chain Monte Carlo(MCMC)analysis.Using these best-fit values of the model parameters,we discussed the results and behavior of the derived models.Further,we discussed the Akaike information criterion(AIC)and Bayesian information criterion(BIC)for the derived models in the context of the Lambda cold dark matter(ΛCDM).We found that the geometrical sector dark equation of state parameter ω_(de)behaves just like a dark energy candidate.We also found that both models are transit phase models.Model-Ⅰ approaches the ΛCDM model in the late-time universe,whereas Model-Ⅱ approaches quintessence scenarios.展开更多
With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic object...With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.展开更多
In this work, we consider the so-called Λ(α)CDM cosmology with Λ∝α^(-6) while the fine-structure"constant" α is varying. In this scenario, the accelerated expansion of the universe is driven by the cos...In this work, we consider the so-called Λ(α)CDM cosmology with Λ∝α^(-6) while the fine-structure"constant" α is varying. In this scenario, the accelerated expansion of the universe is driven by the cosmological"constant" Λ(equivalently the vacuum energy), and the varying α is driven by a subdominant scalar field ? coupling with the electromagnetic field. The observational constraints on the varying α and Λ∝α^(-6) models with various couplings BF(?) between the subdominant scalar field ? and the electromagnetic field are considered.展开更多
文摘NASA spacecrafts has suffered from three anomalies. The Pioneers spacecrafts were decelerated, and their spin when not disturbed, was declining. On the other hand, fly-bys for gravity assists, appeared with extra speeds, relative to infinity. The Pioneers and fly-by anomalies are given now exact general relativistic full general solutions, in a rotating expanding Universe. We cite new evidence on the rotation of the Universe. Our solution seems to be the only one that solves the three anomalies.
文摘The Einstein ring is usually explained in the framework of the gravitational lens. Conversely here we apply the framework of the expansion of a superbubble (SB) in order to explain the spherical appearance of the ring. Two classical equations of motion for SBs are derived in the presence of a linear and a trigonometric decrease for density. A relativistic equation of motion with an inverse square dependence for the density is derived. The angular distance, adopting the minimax approximation, is derived for three relativistic cosmologies: the standard, the flat and the wCDM. We derive the relation between redshift and Euclidean distance, which allows fixing the radius of the Einstein ring. The details of the ring are explained by a simple version of the theory of images.
文摘The harmonic condition is applied to the motion of galaxies in relativistic cosmology. For the material universe we consider that the average distribution of matter on the large scale in the universe is homogenous and isotropic, but within each small region individual galaxies can have large or small masses. Each galaxy moves according to the laws of motion determined by the field equations of gravitation for the average distribution of matter in the whole universe. Transformations between the isotropic, the co-moving, theRobertson-Walker and the standard system of coordinates can be derived by using the harmonic condition.
文摘Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high-quality supernovae data-sets are being produced, their statistical anal- ysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.
文摘A superbubble which advances in a symmetric Navarro-Frenk-White density profile or in an auto-gravitating density profile generates a thick shell with a radius that can reach 10 kpc. The application of the symmetric and asymmetric image theory to this thick 3D shell produces a ring in the 2D map of intensity and a characteristic “U” shape in the case of 1D cut of the intensity. A comparison of such a ring originating from a superbubble is made with the Einstein’s ring. A Taylor approximation of order 10 for the angular diameter distance is derived in order to deal with high values of the redshift.
文摘We present an analytical solution for the luminosity distance in spatially flat cosmology with pressureless matter and the cosmological constant. The complex analytical solution is made of a real part and a negligible imaginary part. The real part of the luminosity distance allows finding the two parameters H<sub>0</sub> and Ω<sub>M</sub> . A simple expression for the distance modulus for SNs of type Ia is reported in the framework of the mini-max approximation.
文摘We investigate direction dependence and non-Gaussian features in high-z cosmological data using ?_(χ~2) and ?_χ statistics and the Kolmogorov-Smirnov test. These techniques are applied on a set of calibrated long gamma-ray bursts(GRBs) and its combination with recent Type Ia supernovae data(Union2). Our statistical analysis shows a weak but consistent direction dependence in both the data sets.The analysis also indicates a non-Gaussian nature of errors in both data sets.
文摘We review the distance modulus in twelve different cosmologies: the ΛCDM model, the wCDM model, the Cardassian model, the flat case, the <i>ø</i>CDM cosmology, the Einstein—De Sitter model, the modified Einstein—De Sitter model, the simple GR model, the flat expanding model, the Milne model, the plasma model and the modified tired light model. The above distance moduli are processed for three different compilations of supernovae and a supernovae + GRBs compilation: Union 2.1, JLA, the Pantheon and Union 2.1 + 59 GRBs. For each of the 48 analysed cases we report the relative cosmological parameters, the chi-square, the reduced chi-square, the AIC and the <i>Q</i> parameter. The angular distance as function of the redshift for five cosmologies is reported in the framework of the minimax approximation.
基金supported by the National Natural Science Foundation of China
文摘By adopting the differential age method, we select 17 832 luminous red galaxies from the Sloan Digital Sky Survey Data Release Seven covering redshift 0 〈 z 〈 0.4 to measure the Hubble parameter. Using the full spectrum fitting package UZySS, these spectra are reduced with single stellar population models and optimal age information from our selected sample is derived. With the decreasing age-redshift relation, four new observational H(z) data (OHD) points are obtained, which are H(z) = 69.0 ± 19.6 km s^-1 Mpc^-1 at z = 0.07, H(z) = 68.6± 26.2 km s^-1 Mpc^-1 at z = 0.12, H(z)=72.9 ± 29.6 km s^-1 Mpc^-1 at z = 0.2 and H(z)=88.8 ± 36.6 km s^-1 Mpc^-1 at z = 0.28, respectively. Combined with 21 other available OHD data points, the performance of the constraint on both flat and non-flat ACDM models is presented.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.12105032 and 12147102)the Chongqing Natural Science Foundation(Grant Nos.cstc2021jcyj-msxm X0553 and cstc2021jcyjmsxmX0481)Graduate Research and Innovation Foundation of Chongqing,China(Grant No.CYS21327)。
文摘In this paper,we use three different kinds of observational data,including 130 strong gravitational lensing(SGL)systems,type Ia supernovae(SNeIa:Pantheon and Union2.1)and 31 Hubble parameter data points(H(z))from cosmic chronometers to constrain the phenomenological model(ρ_(x)∝ρ_(m)a^(ξ)).By combining these three kinds of data(Union2.1+SGL+H(z)),we get the parameter value at the confidence interval of 2σ,Ω_(X,0)=0.69±0.34,ω_(x)=−1.24±0.61,ξ=3.8±3.9 and H_(0)=70.22±0.86 kms^(−1) Mpc^(−1).According to our results,we find that theΛCDM model is still the model which is in best agreement with the observational data at present,and the coincidence problem is not alleviated.In addition,the Ω_(X) and Ω_(m) have the same order of magnitude in 0<z<1.26.Finally,we obtain the transition redshift z_(T)=0.645.If the transition occurs in z>0.645,it is necessary to introduce the dark energy interacting with dark matter.
文摘A classical model based on a power law assumption for the radius-time relationship in the expansion of a supernova (SN) allows to derive an analytical expression for the flow of mechanical kinetic energy and the time duration of gamma-ray burst (GRB). A random process based on the ratio of two truncated lognormal distributions for luminosity and luminosity distance allows to derive the statistical distribution for time duration of GRBs. The high velocities involved in the first phase of expansion of a SN require a relativistic treatment. The circumstellar medium is assumed to follow a density profile of Plummer type with eta = 6. A series solution for the relativistic flow of kinetic energy allows to derive in a numerical way the duration time for GRBs. Here we analyze two cosmologies: the standard cosmology and the plasma cosmology.
文摘In this paper, we present a new form of “special relativity” (BSR), which is isomorphic to Einstein’s “special relativity” (ESR). This in turn proves the non-uniqueness of Einstein’s “special relativity” and implies the inconclusiveness of so-called “relativistic physics”. This work presents new results of principal significance for the foundations of physics and practical results for high energy physics, deep space astrophysics, and cosmology as well. The entire exposition is done within the formalism of the Lorentz <em>SL</em>(2<em>C</em>) group acting via isometries on <strong>real 3-dimensional Lobachevskian (hyperbolic) spaces</strong> <em>L</em><sup>3</sup> regarded as quotients <span style="white-space:nowrap;"><em>SL</em>(2<em>C</em>)/<em>SU</em>(2)</span>. We show via direct calculations that both ESR and BSR are parametric maps from Lobachevskian into Euclidean space, namely a <strong>gnomonic</strong> (central) map in the case of ESR, and a<strong> stereographic </strong>map in the case of BSR. Such an identification allows us to link these maps to relevant models of Lobachevskian geometry. Thus, we identify ESR as the physical realization of the Beltrami-Klein (non-conformal) model, and BSR as the physical realization of the Poincare (conformal) model of Lobachevskian geometry. Although we focus our discussion on ball models of Lobachevskian geometry, our method is quite general, and for instance, may be applied to the half-space model of Lobachevskian geometry with appropriate “Lorentz group” acting via isometries on (positive) half space, resulting yet in another “special relativity” isomorphic with ESR and BSR. By using the notion of a<strong> homotopy</strong> of maps, the identification of “special relativities” as maps from Lobachevskian into Euclidean space allows us to justify the existence of an uncountable infinity of hybrid “special relativities” and consequently an uncountable infinity of “relativistic physics” built upon them. This is another new result in physics and it states that so called “relativistic physics” is unique only up to a homotopy. Finally, we show that “paradoxes” of “special relativities” in either ESR or BSR are simply common distortions of maps between non-isometric spaces. The entire exposition is kept at elementary level accessible to majority of students in physics and/or engineering.
基金supported by the National Key R&D Program of China(2023YFA1607800 and 2023YFA1607803)National Natural Science Foundation of China (NSFC,Grant Nos.11925303 and 11890691)+3 种基金supported by the National Natural Science Foundation of China (NSFC,Grant No.12203062)by a CAS Project for Young Scientists in Basic Research (No.YSBR-092)supported by science research grants from the China Manned Space Project with No.CMS-CSST-2021-B01supported by the New Cornerstone Science Foundation through the XPLORER prize。
文摘We extract key information on dark energy from current observations of BAO,OHD and H_(0),and find hints of dynamical behavior of dark energy.In particular,a dynamical dark energy model whose equation of state crosses-1 is favored by observations.We also find that the Universe has started accelerating at a lower redshift than expected.
基金Supported by the Ministry of Science and Higher Education of the Republic of Kazakhstan(AP14870191)。
文摘We investigated some Friedmann-Lemaître-Robertson-Walker(FLRW)cosmological models in the context of metric-affine F(R,Q)gravity,as proposed in[arXiv:1205.5266v6].Here,R and Q are the curvature and nonmetricity scalars using non-special connections,respectively.We obtained the modified field equations using a flat FLRW metric.We then found a connection between the Hubble constant H_(0),density parameter Ω_(m0),and other model parameters in two different situations involving scalars u and w.Next,we used new observational datasets,such as the cosmic chronometer(CC)Hubble and Pantheon SNe Ia datasets,to determine the optimal model parameter values through a Markov chain Monte Carlo(MCMC)analysis.Using these best-fit values of the model parameters,we discussed the results and behavior of the derived models.Further,we discussed the Akaike information criterion(AIC)and Bayesian information criterion(BIC)for the derived models in the context of the Lambda cold dark matter(ΛCDM).We found that the geometrical sector dark equation of state parameter ω_(de)behaves just like a dark energy candidate.We also found that both models are transit phase models.Model-Ⅰ approaches the ΛCDM model in the late-time universe,whereas Model-Ⅱ approaches quintessence scenarios.
文摘With the recent observational evidence in extragalactic astronomy,the interpretation of the nature of quasar redshift continues to be a research interest.Very high redshifts are being detected for extragalactic objects that are presumably very distant and young while also exhibiting properties that are characteristic of a more mature galaxy such as ours.According to Halton Arp and Geoffrey Burbidge,redshift disparities consist of an intrinsic component and are related to an evolutionary process.Karlsson observed redshift periodicity at integer multiples of0.089 in log scale and Burbidge observed redshift periodicity at integer multiples of 0.061 in linear scale.Since Singular Value Decomposition based periodicity estimation is known to be superior for noisy data sets,especially when the data contain multiple harmonics and overtones,mainly irregular in nature,we have chosen it to be our primary tool for analysis of the quasar-galaxy pair redshift data.We have observed a fundamental periodicity of0.051 with a confidence interval of 95%in linear scale with the site-available Sloan Digital Sky Survey Data Release 7(SDSS DR7)quasar-galaxy pair data set.We have independently generated quasar-galaxy pair data sets from both 2d F and SDSS and found fundamental periodicities of 0.077 and 0.089,respectively,in log scale with a confidence interval of 95%.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11575022 and 11175016
文摘In this work, we consider the so-called Λ(α)CDM cosmology with Λ∝α^(-6) while the fine-structure"constant" α is varying. In this scenario, the accelerated expansion of the universe is driven by the cosmological"constant" Λ(equivalently the vacuum energy), and the varying α is driven by a subdominant scalar field ? coupling with the electromagnetic field. The observational constraints on the varying α and Λ∝α^(-6) models with various couplings BF(?) between the subdominant scalar field ? and the electromagnetic field are considered.