The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys...The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.展开更多
The structures of the nuclei on the alpha-decay chain of ^194Rn are investigated in the deformed relativistic mean-field theory with the effective interaction TMA. We put an emphasis on the ground state properties of ...The structures of the nuclei on the alpha-decay chain of ^194Rn are investigated in the deformed relativistic mean-field theory with the effective interaction TMA. We put an emphasis on the ground state properties of ^194Rn. The calculated alpha-decay energies and lifetimes are both very close to the experimental data for ^186Pb and ^190Po. For ^194Rn, the deviations are a little large on both the alpha-decay energy and the lifetime. We also calculate the alpha-decay energies for the isotopes 192~208^Rn. The tendency for the change of the alpha-decay energies with neutron number is correctly reproduced in the relativistic mean-field theory (RMF). In general, the RMF theory can give a good description of the alpha decay chain of ^194Rn.展开更多
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method...We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.展开更多
We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given valu...We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.展开更多
In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated ...In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.展开更多
In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors whi...In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.展开更多
The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) mode...The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) model. The calculation results reproduce the binding energies and the quadrupole deformations well. The calculation results indicate these nuclei at ground states evolve from neaxly-spherical (N = 130) shape to quadrupole deformation shape with the increase of the neutron number. It is also found that among the Rn isotopes, only^222,224 Rn axe oetupole deformed and the octupole deformations for them are small. However, more nuclei (N ≌ 134 148) in Th and U isotopes are octupole deformed and the octupole deformations for some of them are significant (|β3|- 0.1 or even larger).展开更多
This study explores the ground-state characteristics of neutron-rich sodium isotopes,encompassing two-neutron separation energies,root-mean-square radii,quadrupole moments of proton and neutron distributions,single-pa...This study explores the ground-state characteristics of neutron-rich sodium isotopes,encompassing two-neutron separation energies,root-mean-square radii,quadrupole moments of proton and neutron distributions,single-particle levels of bound and resonant states,and neutron density distributions and shapes.Simultaneously,special attention is paid to the distinctive physical phenomena associated with these isotopes.The deformed relativistic mean field theory in complex momentum representations with BCS pairings(DRMF-CMR-BCS)employed in our research provides resonant states with real physics,offering insights into deformed halo nuclei.Four effective interactions(NL3,NL3^(*),PK1,and NLSH)were considered to assess the influence of continuum and deformation effects on halo structures.Calculations for odd-even nuclei ^(35–43)Na revealed the dependence on the chosen effective interaction and number of considered resonant states.Neutron occupation patterns near the Fermi surface,particularly in orbitals 1/2^(−)_(3) and 3/2^(−)_(2),were determined to be crucial in halo formation.The study provided detailed insights into the density distributions,shape evolution,and structure of neutron-rich sodium isotopes,contributing valuably to the field of nuclear physics.展开更多
We report our recent work on mean-field potential effects on the elliptic flows of matters and antimatters in heavy ion collisions leading to the production of a baryon-rich matter.Within the framework of a multiphase...We report our recent work on mean-field potential effects on the elliptic flows of matters and antimatters in heavy ion collisions leading to the production of a baryon-rich matter.Within the framework of a multiphase transport(AMPT) model that includes both initial partonic and final hadronic interactions,we have found that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles,providing thus a plausible explanation of the different elliptic flows between p and anti-p,K+and K-,and π+ and π- observed by the STAR Collaboration in the Beam Energy Scan(BES) program at the Relativistic Heavy Ion Collider(RHIC).Using a partonic transport model based on the Nambu-Jona-Lasinio(NJL) model,we have also studied the effect of scalar and vector mean fields on the elliptic flows of quarks and antiquarks in these collisions.Converting quarks and antiquarks at hadronization to hadrons via the quark coalescence model,we have found that the elliptic flow differences between particles and antiparticles also depend on the strength of the quark vector coupling in baryon-rich quark-gluon plasma,providing thus the possibility of extracting information on the latter's properties from the BES program at RHIC.展开更多
The deconfinement phase transition from ha-dronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field (RMF) theory, when...The deconfinement phase transition from ha-dronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field (RMF) theory, when also the scalar-isovector δ-meson effective field is taken into account. The MIT bag model for describing a quark phase is used. The changes of the pa-rameters of phase transition caused by the pre- sence of δ-meson field are investigated. Finally, alterations in the integral and structure para-meters of hybrid stars due to deconfinement phase transitions are discussed.展开更多
The in-medium feature of nuclear force, which includes both nucleon-nucleon( NN) and hyperon-nucleon( ΛN) interactions, impacts the description of single-Λ hypernuclei. With the alternated mass number or isospin of ...The in-medium feature of nuclear force, which includes both nucleon-nucleon( NN) and hyperon-nucleon( ΛN) interactions, impacts the description of single-Λ hypernuclei. With the alternated mass number or isospin of hypernuclei, such effects may be unveiled by analyzing the systematic evolution of the bulk and single-particle properties. From a density-dependent meson-nucleon/hyperon coupling perspective, a new ΛN effective interaction in the covariant density functional(CDF) theory, namely, DD-LZ1-Λ1, is obtained by fitting the experimental data ofΛ separation energies for several single-Λ hypernuclei. It is then used to study the structure and transition properties of single-Λ hypernuclei in oxygen hyperisotopes, in comparison with those determined using several selected CDF Lagrangians. A discrepancy is explicitly observed in the isospin evolution of Λ1p spin-orbit splitting with various effective interactions, which is attributed to the divergence of the meson-hyperon coupling strengths with increasing density. In particular, the density-dependent CDFs introduce an extra contribution to reduce the value but enhance the isospin dependence of the splitting, which originates from the rearrangement terms of Λ self-energies. In addition, the characteristics of hypernuclear radii are studied along the isotopic chain. Owing to the impurity effect of theΛ hyperon, a size shrinkage is observed in the matter radii of hypernuclei compared with the cores of normal nuclei,and its magnitude is further elucidated to correlate with the incompressibility of nuclear matter. Moreover, there is a sizable model-dependent trend in which the Λ hyperon radii evolve with neutron number, which is decided partly by the in-medium NN interactions and core polarization effects.展开更多
Deformation constrained relativistic mean-field (RMF) approach with fixed configuration and timeodd component has been developed and applied to investigate magnetic moments of light nuclei near doublyclosed shells. Ta...Deformation constrained relativistic mean-field (RMF) approach with fixed configuration and timeodd component has been developed and applied to investigate magnetic moments of light nuclei near doublyclosed shells. Taking 17O as an example, the results and discussion are given in detail.展开更多
The potential energy surfaces of even-even 142-156Ba are investigated in the constrained reflectionasymmetric relativistic mean-field approach with parameter set PK1. It is shown that for the ground states, 142Ba is n...The potential energy surfaces of even-even 142-156Ba are investigated in the constrained reflectionasymmetric relativistic mean-field approach with parameter set PK1. It is shown that for the ground states, 142Ba is near spherical,156Ba well quadrupole-deformed, and in between 144-154Ba octupole deformed. In particular, the nuclei 148,150Ba with N=92, 94 have the largest octupole deformations. By including the octupole degree of freedom, energy gaps N = 88, N = 94 and Z = 56 near Fermi surfaces for the singleparticle levels in 148Ba with β2 ~ 0.26 and β3 ~ 0.17 are found. Furthermore, the performance of the octupole deformation driving pairs (ν2f7/2, ν1i13/2) and (π2d5/2, π1h11/2) is demonstrated by analyzing the singleparticle levels near Fermi surfaces in 148Ba.展开更多
Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for AI = 2 bands in 108,110In ar...Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for AI = 2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I -w plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z = 50 shell and Z = 50, N = 50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ■ (2), deformation parametersβ and γ, and ■ (2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown.展开更多
Based on the current measurement of the neutron distribution radius(R_(n))of ^(208)Pb from the PREX-2 data,we revisited the recently developed G3 and IOPB-I force parameters by fine-tuning some specific couplings with...Based on the current measurement of the neutron distribution radius(R_(n))of ^(208)Pb from the PREX-2 data,we revisited the recently developed G3 and IOPB-I force parameters by fine-tuning some specific couplings within the relativistic mean-field(RMF)model.Theω-ρ-mesons coupling and theρ-meson coupling are constrained to the experimental neutron radius of^(208)Pb without compromising the bulk properties of finite nuclei and infinite nuclear matter observables.The modified parameter sets are applied to calculate the gross properties of finite nuclei such as binding energies,charge distributions,nuclear radii,pairing gaps,and single-particle energies.The root-mean-square deviations in binding energy and charge radius are estimated with respect to the available experimental data for 195 even-even nuclei,and the results compare favourably with the well-calibrated effective interactions of Skyrme,Gogny and other relativistic mean-field parametrizations.The pairing gap estimations for modified G3 and IOPB-I for Sn isotopes are also compared with the Hartree-Fock-Bogoliubov calculation with the Gogny(D1S)interaction.The isotopic shift and single-particle energy spacing are also calculated and compared with the experimental data for both original and modified versions of the G3 and IOPB-I parameter sets.Subsequently,both the modified parameter sets are used to obtain the various infinite nuclear matter observables at saturation.In addition to these,the force parameters are adopted to calculate the properties of a high isospin asymmetry dense system such as neutron star matter and tested for validation using the constraint from GW170817 binary neutron star merger events.The tuned forces predict relatively good results for finite and infinite nuclear matter systems and the current limitation on the neutron radius from PREX-2.A systematic analysis using these two refitted parameter sets over the nuclear chart will be communicated shortly.展开更多
We study the reaction cross sections (σR) and root-mean-square (RMS) radii of ^8Li and ^8B, the halo-like nuclei, with stable target ^12C, ^27Al and ^9Be within the standard optical-limit Glauber model, using den...We study the reaction cross sections (σR) and root-mean-square (RMS) radii of ^8Li and ^8B, the halo-like nuclei, with stable target ^12C, ^27Al and ^9Be within the standard optical-limit Glauber model, using densities obtained from relativistic mean-field (RMF) formalisms and other types of distributions. It is found that the experimental σR can be reproduced well at high energy. The RMS radius and Ar extracted by RMF- theory and harmonic oscillator distribution are compared. larger than those of SLi. In addition, we analyze in detail the We find that the RMS radius and Ar of SB are relationship between σR and density distribution.展开更多
The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry en...The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R(1.0) and R(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M(max)/M☉≤2.05 and with the overlap band for the L0 ×S0 region, to present γ in the range of γ=0.25±0.05.展开更多
The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground st...The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.展开更多
The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agre...The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.展开更多
A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean ...A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean field theory is chosen as DD-LZ1,which can partially remove spurious shell closures.Compared with the fourth Weizsacker-Skyrme mass model,the proposed model provides shell correction energies that exhibit wide spreading,and the root-mean-square mass deviation is 1.353 MeV.Further improvement is in progress.展开更多
基金This study was supported by the National Natural Science Foundation ofChina(Nos.12147106,12175072,and 11722546)the Talent Programof South China University of Technology(No.20210115).
文摘The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production.
基金the Natural Science Foundation of High Education of Anhui Province for Youths under Grant No.2006jq1076the Natural Science Foundation of Anhui Educational Committee under Grant Nos.2006KJ056C and 2006KJ259B+2 种基金National Natural Science Foundation of China under Grant Nos.10475001 and 10675001the Program for New Century Excellent Talents in Universities of China under Grant No.NCET-05-0558the Program for Excellent Talents in Universities of Anhui Province
文摘The structures of the nuclei on the alpha-decay chain of ^194Rn are investigated in the deformed relativistic mean-field theory with the effective interaction TMA. We put an emphasis on the ground state properties of ^194Rn. The calculated alpha-decay energies and lifetimes are both very close to the experimental data for ^186Pb and ^190Po. For ^194Rn, the deviations are a little large on both the alpha-decay energy and the lifetime. We also calculate the alpha-decay energies for the isotopes 192~208^Rn. The tendency for the change of the alpha-decay energies with neutron number is correctly reproduced in the relativistic mean-field theory (RMF). In general, the RMF theory can give a good description of the alpha decay chain of ^194Rn.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10047001,10347113+2 种基金the State Key Basic Research Development Program under Contract No.G200077400the Excellent Young Researcher Grant
文摘We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.
基金Supported by the Nature Science Foundation of China under Grant Nos.10875003 and 10811240152the calculations are supported by CERNET High Performance Computing Center in China
文摘We propose a quantization procedure for the nucleon-scMar meson system, in which an arbitrary mean scalar meson field Ф is introduced. The equivalence of this procedure with the usual one is proven for any given value of qS. By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field, Its corrections on these theories are considered by perturbation up to the second order. The arbitrariness of Ф makes us free to fix it at any stage in the calculation. When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge. When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent. It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not. We suggest to fix the parameter Ф at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
基金supported by National Natural Science Foundation of China (Nos. 10535010, 10675090, 10775068, 10735010, 10975072, 11035001)973 National Major State Basic Research and Development of China (Nos. 2007CB815004, 2010CB327803)+2 种基金CAS Knowledge Innovation Project (No. KJCX2-SW-N02)Research Fund of Doctoral Point (RFDP) (No. 20070284016)Science Foundation of Educational Committee of Anhui Province(No. KJ2012A083)
文摘In this work, the ground-state properties of Pt, Hg, Pb, and Po isotopes have been systematically investigated in the deformed relativistic mean field (RMF) theory with the new parameter set FSUGold. The calculated results show that FSUGold is as successful as NL3 in reproducing the ground-state binding energies of the nuclei in this region. The calculated two- neutron separation energies, quadrupole deformations, and root-mean-square charge radii are in agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 126 and give smaller neutron skin thicknesses than NL3 for all the nuclei considered.
基金Supported by the National Natural Science Foundation of China under Grant No.11075079
文摘In this work, we derive the nuclear form factor for the spin-independent collision between the WIMPs and nucleus in terms of the relativistic mean field (RMF) theory. Comparison with the traditional form factors which are commonly used in literature is given and it is found that our results are slightly above that of the 2PF model by 4% to 8%, but deviate from the Helm form factor by 15% to 25% for the whole recoil energy spectrum of 0 -100 keV. Moreover, taking Xe and Ge as examples, we show the dependence of the form Factor on the recoil energy.
基金Supported by National Natural Science Foundation of China under Grant Nos.10975100, 10979024, 10705014, and 10811130562The Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJCX3-SYW-No2Major State Basic Research Development Program under Grant No.2007CB815000
文摘The octupole deformations and other ground state properties of even-even Rn, Th and U isotopes are investigated systematically within the framework of the reflection asymmetric relativistic mean field (RAS-RMF) model. The calculation results reproduce the binding energies and the quadrupole deformations well. The calculation results indicate these nuclei at ground states evolve from neaxly-spherical (N = 130) shape to quadrupole deformation shape with the increase of the neutron number. It is also found that among the Rn isotopes, only^222,224 Rn axe oetupole deformed and the octupole deformations for them are small. However, more nuclei (N ≌ 134 148) in Th and U isotopes are octupole deformed and the octupole deformations for some of them are significant (|β3|- 0.1 or even larger).
基金Partly supported by the National Natural Science Foundation of China (11935001, 11575001)the Natural Science Foundation of Anhui Province(2008085MA26)+2 种基金Anhui project (Z010118169)the Heavy Ion Research Facility in Lanzhou (HIRFL)(HIR2021PY007)the project of Key Laboratory of High Precision Nuclear Spectroscopy conducted in Chinese Academy of Sciences.
文摘This study explores the ground-state characteristics of neutron-rich sodium isotopes,encompassing two-neutron separation energies,root-mean-square radii,quadrupole moments of proton and neutron distributions,single-particle levels of bound and resonant states,and neutron density distributions and shapes.Simultaneously,special attention is paid to the distinctive physical phenomena associated with these isotopes.The deformed relativistic mean field theory in complex momentum representations with BCS pairings(DRMF-CMR-BCS)employed in our research provides resonant states with real physics,offering insights into deformed halo nuclei.Four effective interactions(NL3,NL3^(*),PK1,and NLSH)were considered to assess the influence of continuum and deformation effects on halo structures.Calculations for odd-even nuclei ^(35–43)Na revealed the dependence on the chosen effective interaction and number of considered resonant states.Neutron occupation patterns near the Fermi surface,particularly in orbitals 1/2^(−)_(3) and 3/2^(−)_(2),were determined to be crucial in halo formation.The study provided detailed insights into the density distributions,shape evolution,and structure of neutron-rich sodium isotopes,contributing valuably to the field of nuclear physics.
基金Supported by the U.S.National Science Foundation(Grant No.PHY-106857)the Welch Foundation(Grant No.A-1358)+4 种基金the NNSF of China(Grant Nos.11135011 and 11275125)Shanghai Rising-Star Program(Grant No.11QH1401100)"Shu Guang" project"Eastern Scholar" program of Shanghaithe ERC-StG(Grant QGPDyn No.259684)
文摘We report our recent work on mean-field potential effects on the elliptic flows of matters and antimatters in heavy ion collisions leading to the production of a baryon-rich matter.Within the framework of a multiphase transport(AMPT) model that includes both initial partonic and final hadronic interactions,we have found that including mean-field potentials in the hadronic phase leads to a splitting of the elliptic flows of particles and their antiparticles,providing thus a plausible explanation of the different elliptic flows between p and anti-p,K+and K-,and π+ and π- observed by the STAR Collaboration in the Beam Energy Scan(BES) program at the Relativistic Heavy Ion Collider(RHIC).Using a partonic transport model based on the Nambu-Jona-Lasinio(NJL) model,we have also studied the effect of scalar and vector mean fields on the elliptic flows of quarks and antiquarks in these collisions.Converting quarks and antiquarks at hadronization to hadrons via the quark coalescence model,we have found that the elliptic flow differences between particles and antiparticles also depend on the strength of the quark vector coupling in baryon-rich quark-gluon plasma,providing thus the possibility of extracting information on the latter's properties from the BES program at RHIC.
文摘The deconfinement phase transition from ha-dronic matter to quark matter in the interior of compact stars is investigated. The hadronic phase is described in the framework of relativistic mean-field (RMF) theory, when also the scalar-isovector δ-meson effective field is taken into account. The MIT bag model for describing a quark phase is used. The changes of the pa-rameters of phase transition caused by the pre- sence of δ-meson field are investigated. Finally, alterations in the integral and structure para-meters of hybrid stars due to deconfinement phase transitions are discussed.
基金the Fundamental Research Funds for the Central Universities,Lanzhou University(lzujbky-2022-sp02,lzujbky-2023-stlt01)the National Natural Science Foundation of China(11875152,12275111)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB34000000)。
文摘The in-medium feature of nuclear force, which includes both nucleon-nucleon( NN) and hyperon-nucleon( ΛN) interactions, impacts the description of single-Λ hypernuclei. With the alternated mass number or isospin of hypernuclei, such effects may be unveiled by analyzing the systematic evolution of the bulk and single-particle properties. From a density-dependent meson-nucleon/hyperon coupling perspective, a new ΛN effective interaction in the covariant density functional(CDF) theory, namely, DD-LZ1-Λ1, is obtained by fitting the experimental data ofΛ separation energies for several single-Λ hypernuclei. It is then used to study the structure and transition properties of single-Λ hypernuclei in oxygen hyperisotopes, in comparison with those determined using several selected CDF Lagrangians. A discrepancy is explicitly observed in the isospin evolution of Λ1p spin-orbit splitting with various effective interactions, which is attributed to the divergence of the meson-hyperon coupling strengths with increasing density. In particular, the density-dependent CDFs introduce an extra contribution to reduce the value but enhance the isospin dependence of the splitting, which originates from the rearrangement terms of Λ self-energies. In addition, the characteristics of hypernuclear radii are studied along the isotopic chain. Owing to the impurity effect of theΛ hyperon, a size shrinkage is observed in the matter radii of hypernuclei compared with the cores of normal nuclei,and its magnitude is further elucidated to correlate with the incompressibility of nuclear matter. Moreover, there is a sizable model-dependent trend in which the Λ hyperon radii evolve with neutron number, which is decided partly by the in-medium NN interactions and core polarization effects.
基金Supported by National Natural Science Foundation of China (10505002, 10435010, 10605001, 10221003)Postdoctoral Science Foundation of China (20060390371)
文摘Deformation constrained relativistic mean-field (RMF) approach with fixed configuration and timeodd component has been developed and applied to investigate magnetic moments of light nuclei near doublyclosed shells. Taking 17O as an example, the results and discussion are given in detail.
基金Supported by Foundation of He’nan Educational Committee (200614003)Young Backbone Teacher Support Program of He’nan Polytechnic University,China Postdoctoral Science Foundation,Major State Basic Research Developing Program(2007CB815000)National Natural Science Foundation of China (10775004,10975007,10975008)
文摘The potential energy surfaces of even-even 142-156Ba are investigated in the constrained reflectionasymmetric relativistic mean-field approach with parameter set PK1. It is shown that for the ground states, 142Ba is near spherical,156Ba well quadrupole-deformed, and in between 144-154Ba octupole deformed. In particular, the nuclei 148,150Ba with N=92, 94 have the largest octupole deformations. By including the octupole degree of freedom, energy gaps N = 88, N = 94 and Z = 56 near Fermi surfaces for the singleparticle levels in 148Ba with β2 ~ 0.26 and β3 ~ 0.17 are found. Furthermore, the performance of the octupole deformation driving pairs (ν2f7/2, ν1i13/2) and (π2d5/2, π1h11/2) is demonstrated by analyzing the singleparticle levels near Fermi surfaces in 148Ba.
基金Supported by National Natural Science Foundation of China(11205068,11205069,11405072,11475072,11547308)China Postdoctoral Science Foundation(2012M520667)
文摘Based on tilted axis cranking relativistic mean-field theory within point-coupling interaction PC-PK1, the rotational structure and the characteristic features of antimagnetic rotation for AI = 2 bands in 108,110In are studied. Tilted axis cranking relativistic mean-field calculations reproduce the experimental energy spectrum well and are in agreement with the experimental I -w plot, although the calculated spin overestimates the experimental values. In addition, the two-shears-like mechanism in candidate antimagnetic rotation bands is clearly illustrated and the contributions from two-shears-like orbits, neutron (gd) orbits above Z = 50 shell and Z = 50, N = 50 core are investigated microscopically. The predicted B(E2), dynamic moment of inertia ■ (2), deformation parametersβ and γ, and ■ (2)/B(E2) ratios in tilted axis cranking relativistic mean-field calculations are discussed and the characteristic features of antimagnetic rotation for the bands before and after alignment are shown.
基金Supported by SERB,Department of Science and Technology,Govt. of India,Project No. CRG/2019/002691FOSTECT Project No. FOSTECT.2019B.04FAPESP Project No. 2017/05660-0
文摘Based on the current measurement of the neutron distribution radius(R_(n))of ^(208)Pb from the PREX-2 data,we revisited the recently developed G3 and IOPB-I force parameters by fine-tuning some specific couplings within the relativistic mean-field(RMF)model.Theω-ρ-mesons coupling and theρ-meson coupling are constrained to the experimental neutron radius of^(208)Pb without compromising the bulk properties of finite nuclei and infinite nuclear matter observables.The modified parameter sets are applied to calculate the gross properties of finite nuclei such as binding energies,charge distributions,nuclear radii,pairing gaps,and single-particle energies.The root-mean-square deviations in binding energy and charge radius are estimated with respect to the available experimental data for 195 even-even nuclei,and the results compare favourably with the well-calibrated effective interactions of Skyrme,Gogny and other relativistic mean-field parametrizations.The pairing gap estimations for modified G3 and IOPB-I for Sn isotopes are also compared with the Hartree-Fock-Bogoliubov calculation with the Gogny(D1S)interaction.The isotopic shift and single-particle energy spacing are also calculated and compared with the experimental data for both original and modified versions of the G3 and IOPB-I parameter sets.Subsequently,both the modified parameter sets are used to obtain the various infinite nuclear matter observables at saturation.In addition to these,the force parameters are adopted to calculate the properties of a high isospin asymmetry dense system such as neutron star matter and tested for validation using the constraint from GW170817 binary neutron star merger events.The tuned forces predict relatively good results for finite and infinite nuclear matter systems and the current limitation on the neutron radius from PREX-2.A systematic analysis using these two refitted parameter sets over the nuclear chart will be communicated shortly.
基金Supported by One Hundred Person Project of Chinese Academy of Sciences (26010701)Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-N13,KJCX3-SYW-N2)National Natural Science Foundation of China (10675156)
文摘We study the reaction cross sections (σR) and root-mean-square (RMS) radii of ^8Li and ^8B, the halo-like nuclei, with stable target ^12C, ^27Al and ^9Be within the standard optical-limit Glauber model, using densities obtained from relativistic mean-field (RMF) formalisms and other types of distributions. It is found that the experimental σR can be reproduced well at high energy. The RMS radius and Ar extracted by RMF- theory and harmonic oscillator distribution are compared. larger than those of SLi. In addition, we analyze in detail the We find that the RMS radius and Ar of SB are relationship between σR and density distribution.
基金a part of the project INCT-FNA Proc.No.464898/2014-5partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)+2 种基金Brazil under grants 300602/2009-0 and 306786/2014-1support from the Israel Science Foundationthe U.S.Department of Energy Office of Science,Office of Nuclear Physics program under award number DE-FG02-94ER40818
文摘The relativistic mean-field models tested in previous works against nuclear matter experimental values,critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energyγ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate theγ values, a trend of linear correlation is observed between γ and the symmetry energy(S0) and a more clear linear relationship is established between γ and the slope of the symmetry energy(L0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of R(1.0) and R(1.4), in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely,IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤M(max)/M☉≤2.05 and with the overlap band for the L0 ×S0 region, to present γ in the range of γ=0.25±0.05.
基金Supported by the Major State Basic Research Development Program (Grant No.2007CB815000)the National Natural Science Foundation of China (Grant Nos.10775004,10221003,10720003,and 10705004)
文摘The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.
基金Supported by the National Natural Science Foundation of China (Grant Nos.10811130562 and 10505016)
文摘The ground state properties of La isotopes are investigated with the reflection asymmetric relativistic mean field(RAS-RMF) model.The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment.The calculation results indicate the change of the quadrupole deformation with the nuclear mass number.The "kink" on the isotope shifts is observed at A = 139 where the neutron number is the magic number N = 82.It is also found that the octupole deformations may exist in the La isotopes with mass number A ~ 145-155.
基金Supported by the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK2021-01)the National Natural Science Foundation of China(U2032141)+2 种基金Natural Science Foundation of Henan Province(202300410480,202300410479)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(JC202041041)the Physics Research and Development Program of Zhengzhou University(32410217)。
文摘A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean field theory is chosen as DD-LZ1,which can partially remove spurious shell closures.Compared with the fourth Weizsacker-Skyrme mass model,the proposed model provides shell correction energies that exhibit wide spreading,and the root-mean-square mass deviation is 1.353 MeV.Further improvement is in progress.