期刊文献+
共找到2,174篇文章
< 1 2 109 >
每页显示 20 50 100
Electromagnetic fields in ultra-peripheral relativistic heavy-ion collisions 被引量:1
1
作者 Jie Zhao Jin-Hui Chen +1 位作者 Xu-Guang Huang Yu-Gang Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期103-109,共7页
Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that... Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects. 展开更多
关键词 Electromagnetic fields Neutrons Ultra-peripheral relativistic heavy-ion collisions(UPC)
下载PDF
Fully relativistic energies,transition properties,and lifetimes of lithium-like germanium
2
作者 Shuang Li Jing Zhou +2 位作者 Liu-Hong Zhu Xiu-Fei Mei Jun Yan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期52-61,共10页
Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the ... Employing two fully relativistic methods,the multi-reference configuration Dirac-Hartree-Fock(MCDHF)methodand the relativistic many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest35 energy levels of the(1s^(2))nl configurations(where the principal quantum number n=2-6 and the angular quantum numberl=0,...,n-1)of lithium-like germanium(Ge XXX),as well as complete data on the transition wavelengths,radiativerates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magneticdipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.The results from the two methodsare consistent with each other and align well with previous accurate experimental and theoretical findings.We assess theoverall accuracies of present RMBPT results to be likely the most precise ones to date.The present fully relativistic resultsshould be helpful for soft x-ray laser research,spectral line identification,plasma modeling and diagnosing.The datasetspresented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00135. 展开更多
关键词 MULTI-REFERENCE Dirac-Hartree-Fock relativistic many-body perturbation radiative rate lifetime
下载PDF
Properties of collective flow and pion production in intermediate-energy heavy-ion collisions with a relativistic quantum molecular dynamics model
3
作者 Si-Na Wei Zhao-Qing Feng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期155-169,共15页
The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated sys... The relativistic mean-field approach was implemented in the Lanzhou quantum molecular dynamics transport model(LQMD.RMF). Using the LQMD.RMF, the properties of collective flow and pion production were investigated systematically for nuclear reactions with various isospin asymmetries. The directed and elliptic flows of the LQMD.RMF are able to describe the experimental data of STAR Collaboration. The directed flow difference between free neutrons and protons was associated with the stiffness of the symmetry energy, that is, a softer symmetry energy led to a larger flow difference. For various collision energies, the ratio between the π^(-) and π^(+) yields increased with a decrease in the slope parameter of the symmetry energy. When the collision energy was 270 MeV/nucleon, the single ratio of the pion transverse momentum spectra also increased with decreasing slope parameter of the symmetry energy in both nearly symmetric and neutron-rich systems.However, it is difficult to constrain the stiffness of the symmetry energy with the double ratio because of the lack of threshold energy correction on the pion production. 展开更多
关键词 Heavy-ion collision Collective flow Pion production Symmetry energy relativistic mean field
下载PDF
Relativistic Heavy Ion Collider and the Large Hadron Collider for Heavy Ion Fusion
4
作者 Ardeshir Irani 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期825-827,共3页
Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may no... Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider. 展开更多
关键词 Heavy Ion Fusion relativistic Heavy Ion Collider Large Hadron Collider Inertial Confinement Fusion National Ignition Facility
下载PDF
Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
5
作者 卢光伟 李曜均 +5 位作者 胡曦辰 陈思宇 徐豪 祝铭阳 闫文超 陈黎明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期363-368,共6页
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi... The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source. 展开更多
关键词 relativistic electron beams acceleration by laser–plasma interactions finite element analysis
下载PDF
Collision off-axis position dependence of relativistic nonlinear Thomson inverse scattering of an excited electron in a tightly focused circular polarized laser pulse
6
作者 王禹博 杨青屿 +2 位作者 常一凡 林宗熠 田友伟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期344-354,共11页
This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circ... This paper presents a novel view of the impact of electron collision off-axis positions on the dynamic properties and relativistic nonlinear Thomson inverse scattering of excited electrons within tightly focused, circularly polarized laser pulses of varying intensities. We examine the effects of the transverse ponderomotive force, specifically how the deviation angle and speed of electron motion are affected by the initial off-axis position of the electron and the peak amplitude of the laser pulse. When the laser pulse intensity is low, an increase in the electron's initial off-axis distance results in reduced spatial radiation power, improved collimation, super-continuum phenomena generation, red-shifting of the spectrum's harmonic peak, and significant symmetry in the radiation radial direction. However, in contradiction to conventional understandings,when the laser pulse intensity is relatively high, the properties of the relativistic nonlinear Thomson inverse scattering of the electron deviate from the central axis, changing direction in opposition to the aforementioned effects. After reaching a peak, these properties then shift again, aligning with the previous direction. The complex interplay of these effects suggests a greater nuance and intricacy in the relationship between laser pulse intensity, electron position, and scattering properties than previously thought. 展开更多
关键词 relativistic nonlinear Thomson inverse scattering off-axis collision radiation angle distribution tightly focused laser pulse
下载PDF
Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems
7
作者 Peifeng Fan Hong Qin +2 位作者 Jian Liu Nong Xiang Zhi Yu 《Frontiers of physics》 SCIE CSCD 2018年第4期209-220,共12页
A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is... A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space- time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system. 展开更多
关键词 relativistic particle-field system different manifolds mass-shell constraint geometric weakEuler-Lagrange equation symmetry conservation laws
原文传递
Generation of synchronized x-rays and mid-infrared pulses by Doppler-shifting of relativistically intense radiation from near-critical-density plasmas 被引量:2
8
作者 Nikita A.Mikheytsev Artem V.Korzhimanov 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2023年第2期6-13,共8页
It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in b... It is shown that when relativistically intense ultrashort laser pulses are reflected from the boundary of a plasma with a near-critical density,the Doppler frequency shift leads to generation of intense radiation in both the high-frequency(up to the x-ray)and low-frequency(mid-infrared)ranges.The efficiency of energy conversion into the wavelength range above 3μm can reach several percent,which makes it possible to obtain relativistically intense pulses in the mid-infrared range.These pulses are synchronized with high harmonics in the ultraviolet and x-ray ranges,which opens up opportunities for high-precision pump–probe measurements,in particular,laser-induced electron diffraction and transient absorption spectroscopy. 展开更多
关键词 pump INTENSE relativistic
下载PDF
Determination of Solar Radius and Earth’s Radius by Relativistic Matter Wave 被引量:2
9
作者 Huaiyang Cui 《Journal of Applied Mathematics and Physics》 2023年第1期69-84,共16页
In recent years, relativistic matter waves have been applied to the solar system to explain some quantum gravity effects. This paper shows that the solar size and Earth’s size are the consequences of Bode’s rule in ... In recent years, relativistic matter waves have been applied to the solar system to explain some quantum gravity effects. This paper shows that the solar size and Earth’s size are the consequences of Bode’s rule in terms of the relativistic matter wave. The solar radius is determined as 7e+8 (m) with a relative error of 0.72%;the Earth’s radius is determined as 6.4328e+6 (m) with a relative error of 0.86%. The Earth’s atmospheric circulation is also investigated in terms of the relativistic matter wave, the wind fields on the Earth’s surface are calculated, and the results agree well with experimental observation. These findings indicate that the solar system is under the control of the planetary relativistic matter waves. 展开更多
关键词 relativistic Matter Wave Sunspot Cycle Atmospheric Circulation
下载PDF
Density-dependent carrier-envelope phase shift in attosecond pulse generation from relativistically oscillating mirrors 被引量:1
10
作者 Rishat Zagidullin Stefan Tietze +2 位作者 Matt Zepf Jingwei Wang Sergey Rykovanov 《Matter and Radiation at Extremes》 SCIE EI CSCD 2023年第6期41-48,共8页
The carrier-envelope phase(CEP)φ_(0)is one of the key parameters in the generation of isolated attosecond pulses.In particular,“cosine”pulses(φ_(0)=0)are best suited for generation of single attosecond pulses in a... The carrier-envelope phase(CEP)φ_(0)is one of the key parameters in the generation of isolated attosecond pulses.In particular,“cosine”pulses(φ_(0)=0)are best suited for generation of single attosecond pulses in atomic media.Such“cosine”pulses have the peak of the most intense cycle aligned with the peak of the pulse envelope,and therefore have the highest contrast between the peak intensity and the neighboring cycles.In this paper,the dynamics of single attosecond pulse generation from a relativistically oscillating plasma mirror is investigated.We use an elementary analytical model as well as particle-in-cell simulations to study few-cycle attosecond pulses.We find that the phase of the field driving the surface oscillations depends on the plasma density and preplasma scale length.This leads us to a counterintuitive conclusion:for the case of normal incidence and a sharp plasma-vacuum boundary,the CEP required for the generation of a single attosecond pulse phase is closer toφ_(0)=π/2(a“sine”pulse),with the exact value depending on the plasma parameters. 展开更多
关键词 ENVELOPE OSCILLATING relativistic
下载PDF
On the Relativistic Harmonic Oscillator
11
作者 Yair Zarmi 《Applied Mathematics》 2023年第1期1-20,共20页
The relativistic harmonic oscillator represents a unique energy-conserving oscillatory system. The detailed characteristics of the solution of this oscillator are displayed in both weak- and extreme-relativistic limit... The relativistic harmonic oscillator represents a unique energy-conserving oscillatory system. The detailed characteristics of the solution of this oscillator are displayed in both weak- and extreme-relativistic limits using different expansion procedures, for each limit. In the weak-relativistic limit, a Normal Form expansion is developed, which yields an approximation to the solution that is significantly better than in traditional asymptotic expansion procedures. In the extreme-relativistic limit, an expansion of the solution in terms of a small parameter that measures the proximity to the limit (v/c) &#8594;1 yields an excellent approximation for the solution throughout the whole period of oscillations. The variation of the coefficients of the Fourier expansion of the solution from the weak- to the extreme-relativistic limits is displayed. 展开更多
关键词 relativistic Harmonic Oscillator Weak-relativistic Limit Extreme-relativistic Limit
下载PDF
Fully relativistic many-body perturbation energies,transition properties,and lifetimes of lithium-like iron Fe XXIV
12
作者 李双 赵敏 +2 位作者 刘国庆 胡昌宝 潘国柱 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期90-99,共10页
Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl ... Employing the advanced relativistic configuration interaction(RCI)combined with the many-body perturbation theory(RMBPT)method,we report energies and lifetime values for the lowest 35 energy levels from the(1s^(2))nl configurations(where the principal quantum number n=2–6 and the angular quantum number l=0,...,n-1)of lithium-like iron Fe XXIV,as well as complete data on the transition wavelengths,radiative rates,absorption oscillator strengths,and line strengths between the levels.Both the allowed(E1)and forbidden(magnetic dipole M1,magnetic quadrupole M2,and electric quadrupole E2)ones are reported.Through detailed comparisons with previous results,we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date.Configuration interaction effects are found to be very important for the energies and radiative properties for the ion.The present RMBPT results are valuable for spectral line identification,plasma modeling,and diagnosing. 展开更多
关键词 relativistic many-body perturbation multi-reference configuration radiative rates LIFETIME
下载PDF
POSITIVE CLASSICAL SOLUTIONS OF DIRICHLET PROBLEM FOR THE STEADY RELATIVISTIC HEAT EQUATION
13
作者 杨田洁 袁光伟 《Acta Mathematica Scientia》 SCIE CSCD 2023年第5期2279-2290,共12页
In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 bou... In this paper,for a bounded C2 domain,we prove the existence and uniqueness of positive classical solutions to the Dirichlet problem for the steady relativistic heat equation with a class of restricted positive C2 boundary data.We have a non-existence result,which is the justification for taking into account the restricted boundary data.There is a smooth positive boundary datum that precludes the existence of the positive classical solution. 展开更多
关键词 Dirichlet problem steady relativistic heat equation classical solution
下载PDF
Local wavelength evolution and Landau damping of electrostatic plasma wave driven by an ultra-relativistic electron beam in dense inhomogeneous plasma
14
作者 李然 黄太武 +2 位作者 郁明阳 周沧涛 阮双琛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第7期6-13,共8页
Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in... Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation. 展开更多
关键词 relativistic electron beam transport inhomogeneous plasma energy dissipation
下载PDF
Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
15
作者 张世杰 周维民 +4 位作者 银燕 邹德滨 赵娜 谢端 卓红斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期363-369,共7页
Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simul... Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics. 展开更多
关键词 intense terahertz radiation relativistic laser–plasma interactions particle-in-cell simulation
下载PDF
Influence of acceleration on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses
16
作者 常一凡 王禹博 +2 位作者 王畅 申雨婷 田友伟 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期203-212,共10页
The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynam... The influence of acceleration of electrons on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses is investigated for the first time. In the framework of classical electrodynamics, it is deduced and found that the more severe the change in the electron transverse acceleration, the stronger the asymmetry of the radiation angle distribution, and the greater the transverse acceleration, the greater the radiation energy. Tightly focused, ultrashort,and high-intensity lasers lead to violent electron acceleration processes, resulting in a bifurcated radiation structure with asymmetry and higher energy. Additionally, a change in the initial phase of the laser brings about periodic change of the acceleration, which in turn makes the radiation change periodically with the initial phase. In other cases, the radiation is in a symmetrical double-peak structure. These phenomena will help us to modulate radiation with more energy collimation. 展开更多
关键词 transverse acceleration relativistic nonlinear Thomson scattering tightly focused radiation angle distribution
下载PDF
Ontology of Relativistic Mass
17
作者 Edwin Eugene Klingman 《Journal of Modern Physics》 CAS 2023年第5期741-754,共14页
The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based o... The term “relativistic mass” defined by equation m=γm<sub>0</sub> with γ=(1-v<sup>2</sup>/c<sup>2</sup>)<sup>-1/2</sup> has a somewhat controversial history, based on special relativity theory, mathematics, logic, intuition, experiment, and ontology. Key is the ontological framework, specifically whether the framework does or does not include gravity. This paper examines both cases, with detailed analysis of gravitomagnetism and of relativistic mass in collisions. 展开更多
关键词 Spacetime Ontology Comparative Ontology Local Absolute Space relativistic Mass C-Field Circulation Hidden Energy Reservoir Transverse Mass Longitudinal Mass
下载PDF
Previously Unknown Formulas for the Relativistic Kinetic Energy of an Electron in a Hydrogen Atom
18
作者 Koshun Suto 《Journal of Applied Mathematics and Physics》 2023年第4期972-987,共16页
Einstein’s energy-momentum relationship, which holds in an isolated system in free space, contains two formulas for relativistic kinetic energy. Einstein’s relationship is not applicable in a hydrogen atom, where po... Einstein’s energy-momentum relationship, which holds in an isolated system in free space, contains two formulas for relativistic kinetic energy. Einstein’s relationship is not applicable in a hydrogen atom, where potential energy is present. However, a relationship similar to that can be derived. That derived relationship also contains two formulas, for the relativistic kinetic energy of an electron in a hydrogen atom. Furthermore, it is possible to derive a third formula for the relativistic kinetic energy of an electron from that relationship. Next, the paper looks at the fact that the electron has a wave nature. Five more formulas can be derived based on considerations relating to the phase velocity and group velocity of the electron. This paper presents eight formulas for the relativistic kinetic energy of an electron in a hydrogen atom. 展开更多
关键词 Einstein’s Energy-Momentum Relationship relativistic Kinetic Energy Bohr’s Quantum Condition Potential Energy Phase Velocity Group Velocity
下载PDF
Relativistic toroidal light solitons in plasma
19
作者 程中明 邓达超 +1 位作者 郁明阳 武慧春 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期1-5,共5页
In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations t... In the laser–plasma interaction,relativistic soliton formation is an interesting nonlinear phenomenon and important light mode convection in plasmas.Here,it is shown by threedimensional particle-in-cell simulations that relativistic toroidal solitons,composed of intense light self-consistently trapped in toroidal plasma cavities,can be produced by azimuthallypolarized relativistic laser pulses in a near-critical underdense plasma. 展开更多
关键词 azimuthally polarized laser pulse near-critical underdense plasma toroidal solitons relativistic solitons in plasma 3D particle-in-cell simulation self-focusing in plasma
下载PDF
Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field 被引量:5
20
作者 门福殿 刘慧 +1 位作者 范召兰 朱后禹 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期2649-2653,共5页
This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based... This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation, the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures. 展开更多
关键词 Fermi gas relativistic effect thermodynamic property
下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部