The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the rel...The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the relativistic point-coupling model.The implications for the proton drip lines,candidates for two-proton emitters,as well as the impact on the astrophysical rp-process are discussed.展开更多
We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method...We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.展开更多
Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of ma...Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.展开更多
Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the co...Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.展开更多
Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributi...Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.展开更多
In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar mas...In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.展开更多
Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested par...Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.展开更多
The renormalization of pion-exchange nucleon self-energy in nuclear matter is doneby dispersion relation.The exchange and correlation energies(in the ring approximation)ofpion,σ and ω mesons are derived and used to ...The renormalization of pion-exchange nucleon self-energy in nuclear matter is doneby dispersion relation.The exchange and correlation energies(in the ring approximation)ofpion,σ and ω mesons are derived and used to calculate the binding energy of nuctear matter atzero temperature.We find that the pionic contribution to the binding energy fails to lift the highdensity end of the binding energy curve,that is,the binding energy can not saturate without adensity dependent correction to the σNN and ωNN coupling constants.But the binding energycan saturate in the relativistic Hartree approximation plus the exchange and correlation energiesof л meson.展开更多
Using the single particle states and the residual interaction derived from the relativistic point-coupling model with the PC-F1 parameter set,the second-order core polarization corrections to nuclear magnetic moments ...Using the single particle states and the residual interaction derived from the relativistic point-coupling model with the PC-F1 parameter set,the second-order core polarization corrections to nuclear magnetic moments of LS closed shell nuclei ±1 nucleon with A = 15,17,39 and 41 are studied and compared with previous non-relativistic results.It is found that the second-order corrections are significant.With these corrections,the isovector magnetic moments of the concerned nuclei are well reproduced,especially those for A = 17 and A = 41.展开更多
The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections ...The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.展开更多
Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under...Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under the assumptions that incident signal to the target is a plane wave and the target is a perfect conductor plane; and their analytic expressions are obtained. The present results are of practical significance to some extent for the accurate expression of the wideband returned signal of a high velocity moving target in the bistatic radar system and for the understanding of wideband ambiguity functions.展开更多
Damped wave diffusion effects during oxygen transport in islets of Langerhans is studied. Simultaneous reaction and diffusion models were developed. The asymptotic limits of first and zeroth order in Michaelis and Men...Damped wave diffusion effects during oxygen transport in islets of Langerhans is studied. Simultaneous reaction and diffusion models were developed. The asymptotic limits of first and zeroth order in Michaelis and Menten kinetics was used in the study. Parabolic Fick diffusion and hyperbolic damped wave diffusion were studied separately. Method of relativistic transformation was used in order to obtain the solution for the hyperbolic model. Model solutions was used to obtain mass inertial times. Convective boundary condition was used. Sharma number (mass) may be used in evaluating the importance of the damped wave diffusion process in relation to other processes such as convection, Fick steady diffusion in the given application. Four regimes can be identified in the solution of hyperbolic damped wave diffusion model. These are;1) Zero Transfer Inertial Regime, 0 0≤τ≤τinertia;2) Rising Regime during times greater than inertial regime and less than at the wave front, Xp > τ, 3) at Wave front , τ = Xp;4) Falling Regime in open Interval, of times greater than at the wave front, τ > Xp. Method of superposition of steady state concentration and transient concentration used in both solutions of parabolic and hyperbolic models. Expression for steady state concentration developed. Closed form analytic model solutions developed in asymptotic limits of Michaelis and Menten kinetic at zeroth order and first order. Expression for Penetration Length Derived-Hypoxia Explained. Expression for Inertial Lag Time Derived. Solution was obtained by the method of separation of variables for transient for parabolic model and by the method of relativistic transformation for hyperbolic models. The concentration profile was expressed as a sum of steadty state and transient parts.展开更多
With experimental masses updated from AME11,the predictive power of relativistic mean-field(RMF) mass model is carefully examined and compared with HFB-17,FRDM,WS*,and DZ28 mass models.In the relativistic mean-field m...With experimental masses updated from AME11,the predictive power of relativistic mean-field(RMF) mass model is carefully examined and compared with HFB-17,FRDM,WS*,and DZ28 mass models.In the relativistic mean-field model,the calculation with the PC-PK1 has improved significantly in describing masses compared to the TMA,especially for the neutron-deficient nuclei.The corresponding rms deviation with respect to the known masses falls to 1.4 MeV.Furthermore,it is found that the RMF mass model better describes the nuclei with large deformations.The rms deviation for nuclei with the absolute value of quadrupole deformation parameter greater than 0.25 falls to 0.93,crossing the 1 MeV accuracy threshold for the PC-PK1,which may indicate the new model is more suitable for those largely-deformed nuclei.In addition,the necessity of new high-precision experimental data to evaluate and develop the nuclear mass models is emphasized as well.展开更多
The radial basis function(RBF) approach is a powerful tool to improve nuclear mass predictions. By combining the RBF approach with the latest relativistic continuum Hartree-Bogoliubov(RCHB) model, the local systematic...The radial basis function(RBF) approach is a powerful tool to improve nuclear mass predictions. By combining the RBF approach with the latest relativistic continuum Hartree-Bogoliubov(RCHB) model, the local systematic deviations between the RCHB mass predictions and the experimental data are eliminated, and the root-meansquare(rms) mass deviation is significantly reduced from 7.923 MeV to 0.386 MeV. However, systematic deviations between the RBF improved mass predictions and the experimental data remain for nuclei with four different odd-even parities, i.e.(even Z, even N),(even Z, odd N),(odd Z, even N), and(odd Z, odd N). They can be reduced by separately training RBF for the four groups of nuclei, and the resulting rms deviation decreases to 0.229 MeV. It is found that the RBF approach can describe the deformation effects neglected in the present RCHB mass calculations, and also improves the description of the shell effect and the pairing effect.展开更多
A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean ...A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean field theory is chosen as DD-LZ1,which can partially remove spurious shell closures.Compared with the fourth Weizsacker-Skyrme mass model,the proposed model provides shell correction energies that exhibit wide spreading,and the root-mean-square mass deviation is 1.353 MeV.Further improvement is in progress.展开更多
Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium and bottomonium states. The full Hamiltonian used in the investigation has Lorentz scalar plu...Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium and bottomonium states. The full Hamiltonian used in the investigation has Lorentz scalar plus vector confinement potential, along with the confined one gluon exchange potential (COGEP). A good agreement with the experimental masses for the ground and the radially excited states is obtained both for the triplet and singlet S wave mesons. The decay properties of the ground state charmonium and bottomonium are investigated.展开更多
Nucleon momentum distribution(NMD), particularly its high-momentum components, is essential for understanding the nucleonnucleon(NN) correlations in nuclei. Herein, we develop the studies of NMD of 56Fe from the axial...Nucleon momentum distribution(NMD), particularly its high-momentum components, is essential for understanding the nucleonnucleon(NN) correlations in nuclei. Herein, we develop the studies of NMD of 56Fe from the axially deformed relativistic mean-field(RMF) model. Moreover, we introduce the effects of NN correlation into the RMF model from phenomenological models basing on deuteron and nuclear matter. For the region k < kF, the effects of deformation on the NMD of the RMF model are investigated using the total and single-particle NMDs. For the region k > kF, the high-momentum components of the RMF model are modified by the effects of NN correlation, which agree with the experimental data. Comparing the NMD of relativistic and non-relativistic mean-field models, the relativistic effects on nuclear structures in momentum space are analyzed. Finally, by analogizing the tensor correlations in deuteron and Jastrow-type correlations in nuclear matter, the behaviors and contributions of NN correlations in 56Fe are further analyzed, which helps clarify the effects of the tensor force on the NMD of heavy nuclei.展开更多
On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. ...On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. The thermal effects on the vacuum structure of strongly interacting matter are investigated, and the soliton field equation of the model is solved directly in the whole range of temperature via a numerical method. The phase structure of the system and the features of deconfining phase transition are analysed in detail. In addition, the collective excitations in the vacuum caused by thermal effects are investigated by making use of an order parameter which is given to describe the vacuum condensation at finite temperature. A physical mechanism and an intuitive picture are presented for the formation of QGP from both deconfined hardon matter and the vacuum excitation in relativistic heavy ion collisions.展开更多
We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral ...We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral method is chosen to describe the nucleon Green's function in a finite nucleus. Some remarks have been made in conclusion.展开更多
基金supported partially by the National Natural Science Foundation of China (Grant Nos 10975008 and 10947149)the Program for New Century Excellent Talents in Universitythe Fundamental Research Funds for the Central Universities
文摘The masses,one-and two-proton separation energies of proton-rich nuclei with Z = 20-55,are computed using the measured masses of mirror neutron-rich nuclei and the Coulomb displacement energies calculated from the relativistic point-coupling model.The implications for the proton drip lines,candidates for two-proton emitters,as well as the impact on the astrophysical rp-process are discussed.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos.10047001,10347113+2 种基金the State Key Basic Research Development Program under Contract No.G200077400the Excellent Young Researcher Grant
文摘We develop a relativistic nuclear structure model, relativistic consistent angular-momentum projected shell-model (RECAPS), which combines the relativistic mean-field theory with the angular-momentum projection method. In this new model, nuclear ground-state properties are first calculated consistently using relativistic mean-field (RMF) theory. Then angular momentum projection method is used to project out states with good angular momentum from a few important configurations. By diagonalizing the hamiltonian, the energy levels and wave functions are obtained. This model is a new attempt for the understanding of nuclear structure of normal nuclei and for the prediction of nuclear properties of nuclei far from stability. In this paper, we will describe the treatment of the relativistic mean field. A computer code, RECAPS-RMF, is developed. It solves the relativistic mean field with axial-symmetric deformation in the spherical harmonic oscillator basis. Comparisons between our calculations and existing relativistic mean-field calculations are made to test the model. These include the ground-state properties of spherical nuclei <SUP>16</SUP>O and <SUP>208</SUP>Pb, the deformed nucleus <SUP>20</SUP>Ne. Good agreement is obtained.
基金国家自然科学基金,中国科学院资助项目,教育部资助项目,中国科学院理论物理研究所资助项目,the Knowledge Innovation Probject Project of the Chinexe Academy of Sciences
文摘Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.
基金国家自然科学基金,Foundations of the Chinese Academy of Sciences (X-37),the Chinese Ministry of Education (B-22),中国科学院资助项目,the Chinese Academy of Sciences
文摘Based on a relativistic quark model approach with an effective potential , the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.
基金The project supported by the Science Foundation of Chinese Academy of Engineering Physics under Contract No.42103 and for Research Doctor Subsidizes (2001)
文摘Based on relativistic constituent quark (RCQ) model, the electric and magnetic form factors are analyzed. The ratio of the two form factors for the proton , which is an image of its charge and magnetization distributions, is calculated in the light-front formulism of RCQ model. Recently, this ratio was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the polarization technique. The new data presented span the range and are well described by a linear Q<SUP>2</SUP> fit. Also, the ratio reaches a constant value while Q<SUP>2</SUP> becomes larger than 2 (GeV)<SUP>2</SUP>. Our calculation results are presented and appear to be consistent with the experimental ones.
文摘In this paper we compute general-relativistic polytropic models simulating rigidly rotating, pulsating neutron stars. These relativistic compact objects, with a radius of ~10 km and mass between ~1.4 and 3.2 solar masses, are closely related to pulsars. We emphasize on computing the change in the pulsation eigenfrequencies owing to a rigid rotation, which, in turn, is a decisive issue for studying stability of such objects. In our computations, we keep rotational perturbation terms of up to second order in the angular velocity.
基金The authors would like to acknowledge K.C. Chung (in memory) and C.S. Wang by their help in the beginning of this work.
文摘Effects of excluded volume of nucleons on nuclear matter are studied, and the nuclear properties that follow from different relativistic mean-field model parametrizations are compared. We show that, for all tested parametrizations, the resulting volume energy al and the symmetry energy J are around the acceptable values of 16 MeV and 30 MeV, and the density symmetry L is around 100 MeV. On the other hand, models that consider only linear terms lead to incompressibility Ko much higher than expected. For most parameter sets there exists a critical point (pc, δc), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero. This critical point depends on the excluded volume parameter r. If this parameter is larger than 0.5 fm, there is no critical point and the pure neutron matter is predicted to be bound. The maximum value for neutron star mass is 1.85M⊙, which is in agreement with the mass of the heaviest observed neutron star 4U0900-40 and corresponds to r = 0.72 fm. We also show that the light neutron star mass (1.2M⊙) is obtained for r ≌ 0.9 fro.
基金The project supported by the National Natural Scicnce Foundation of China
文摘The renormalization of pion-exchange nucleon self-energy in nuclear matter is doneby dispersion relation.The exchange and correlation energies(in the ring approximation)ofpion,σ and ω mesons are derived and used to calculate the binding energy of nuctear matter atzero temperature.We find that the pionic contribution to the binding energy fails to lift the highdensity end of the binding energy curve,that is,the binding energy can not saturate without adensity dependent correction to the σNN and ωNN coupling constants.But the binding energycan saturate in the relativistic Hartree approximation plus the exchange and correlation energiesof л meson.
基金supported by the Major State Basic Research Developing Program (Grant No.2007CB815000)the National Natural Science Foundation of China(Grant Nos.10775004,10720003, 10947013, 10975008, 10975007, and 11005069)the Southwest University Initial Research Foundation Grant to Doctor (Grant No.SWU109011)
文摘Using the single particle states and the residual interaction derived from the relativistic point-coupling model with the PC-F1 parameter set,the second-order core polarization corrections to nuclear magnetic moments of LS closed shell nuclei ±1 nucleon with A = 15,17,39 and 41 are studied and compared with previous non-relativistic results.It is found that the second-order corrections are significant.With these corrections,the isovector magnetic moments of the concerned nuclei are well reproduced,especially those for A = 17 and A = 41.
基金supported by the National Natural Science Foundation of China (Grant No.10947013)the Fundamental Research Funds for the Central Universities (Grant No.XDJK2010B007)the SWU Initial Research Foundation Grant to Doctor (Grant No.SWU109011)
文摘The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic pointcoupling energy functional is applied to evaluate the isospin symmetry-breaking corrections δ c for the 0+ → 0+ superallowed Fermi transitions.With these δ c values,together with the available experimental f t values and the improved radiative corrections,the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined.Even with the consideration of uncertainty,the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.
文摘Taking the relativistic effect of high velocity moving target into account, the Doppler shift, polarization deflection, reflection coefficient and phase delay of reflected electric field are analyzed rigorously under the assumptions that incident signal to the target is a plane wave and the target is a perfect conductor plane; and their analytic expressions are obtained. The present results are of practical significance to some extent for the accurate expression of the wideband returned signal of a high velocity moving target in the bistatic radar system and for the understanding of wideband ambiguity functions.
文摘Damped wave diffusion effects during oxygen transport in islets of Langerhans is studied. Simultaneous reaction and diffusion models were developed. The asymptotic limits of first and zeroth order in Michaelis and Menten kinetics was used in the study. Parabolic Fick diffusion and hyperbolic damped wave diffusion were studied separately. Method of relativistic transformation was used in order to obtain the solution for the hyperbolic model. Model solutions was used to obtain mass inertial times. Convective boundary condition was used. Sharma number (mass) may be used in evaluating the importance of the damped wave diffusion process in relation to other processes such as convection, Fick steady diffusion in the given application. Four regimes can be identified in the solution of hyperbolic damped wave diffusion model. These are;1) Zero Transfer Inertial Regime, 0 0≤τ≤τinertia;2) Rising Regime during times greater than inertial regime and less than at the wave front, Xp > τ, 3) at Wave front , τ = Xp;4) Falling Regime in open Interval, of times greater than at the wave front, τ > Xp. Method of superposition of steady state concentration and transient concentration used in both solutions of parabolic and hyperbolic models. Expression for steady state concentration developed. Closed form analytic model solutions developed in asymptotic limits of Michaelis and Menten kinetic at zeroth order and first order. Expression for Penetration Length Derived-Hypoxia Explained. Expression for Inertial Lag Time Derived. Solution was obtained by the method of separation of variables for transient for parabolic model and by the method of relativistic transformation for hyperbolic models. The concentration profile was expressed as a sum of steadty state and transient parts.
基金supported by the 211 Project of Anhui University (Grant No.02303319-33190135)the Key Research Foundation of Education Ministry of Anhui Province of China(Grant No.KJ2012A021)+1 种基金the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-09-0031)the National Natural Science Foundation of China(Grant Nos.10975008,11105010,11035007, 11128510,11175001 and 11205004)
文摘With experimental masses updated from AME11,the predictive power of relativistic mean-field(RMF) mass model is carefully examined and compared with HFB-17,FRDM,WS*,and DZ28 mass models.In the relativistic mean-field model,the calculation with the PC-PK1 has improved significantly in describing masses compared to the TMA,especially for the neutron-deficient nuclei.The corresponding rms deviation with respect to the known masses falls to 1.4 MeV.Furthermore,it is found that the RMF mass model better describes the nuclei with large deformations.The rms deviation for nuclei with the absolute value of quadrupole deformation parameter greater than 0.25 falls to 0.93,crossing the 1 MeV accuracy threshold for the PC-PK1,which may indicate the new model is more suitable for those largely-deformed nuclei.In addition,the necessity of new high-precision experimental data to evaluate and develop the nuclear mass models is emphasized as well.
基金Supported by the National Natural Science Foundation of China(11805004,11875070 and 11711540016)the Natural Science Foundation of Anhui Province(1708085QA10)+2 种基金the Key Research Foundation of Education Ministry of Anhui Province(KJ2016A026 and SK2018A0577)the Doctor Foundation of Anhui Jianzhu University 2017(2017QD18)the Open fund for Discipline Construction,Institute of Physical Science and Information Technology,Anhui University
文摘The radial basis function(RBF) approach is a powerful tool to improve nuclear mass predictions. By combining the RBF approach with the latest relativistic continuum Hartree-Bogoliubov(RCHB) model, the local systematic deviations between the RCHB mass predictions and the experimental data are eliminated, and the root-meansquare(rms) mass deviation is significantly reduced from 7.923 MeV to 0.386 MeV. However, systematic deviations between the RBF improved mass predictions and the experimental data remain for nuclei with four different odd-even parities, i.e.(even Z, even N),(even Z, odd N),(odd Z, even N), and(odd Z, odd N). They can be reduced by separately training RBF for the four groups of nuclei, and the resulting rms deviation decreases to 0.229 MeV. It is found that the RBF approach can describe the deformation effects neglected in the present RCHB mass calculations, and also improves the description of the shell effect and the pairing effect.
基金Supported by the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK2021-01)the National Natural Science Foundation of China(U2032141)+2 种基金Natural Science Foundation of Henan Province(202300410480,202300410479)the Foundation of Fundamental Research for Young Teachers of Zhengzhou University(JC202041041)the Physics Research and Development Program of Zhengzhou University(32410217)。
文摘A relativistic Weizsacker mass model is proposed based on the single-particle levels and ground state deformations obtained in axial deformed relativistic mean field theory.The density functional of relativistic mean field theory is chosen as DD-LZ1,which can partially remove spurious shell closures.Compared with the fourth Weizsacker-Skyrme mass model,the proposed model provides shell correction energies that exhibit wide spreading,and the root-mean-square mass deviation is 1.353 MeV.Further improvement is in progress.
基金the BRNS for funding the project (Sanction No. 2010/37P/18/BRNS)
文摘Using the phenomenological relativistic harmonic model (RHM) for quarks, we have obtained the masses of S wave charmonium and bottomonium states. The full Hamiltonian used in the investigation has Lorentz scalar plus vector confinement potential, along with the confined one gluon exchange potential (COGEP). A good agreement with the experimental masses for the ground and the radially excited states is obtained both for the triplet and singlet S wave mesons. The decay properties of the ground state charmonium and bottomonium are investigated.
基金the National Natural Science Foundation of China(Grant Nos.11505292,11605105,11822503,11975167,and 12035011)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2020MA096)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.20CX05013A,and 22120210138)the Graduate Innovative Research Funds of China University of Petroleum(East China)(Grant No.YCX2020104).
文摘Nucleon momentum distribution(NMD), particularly its high-momentum components, is essential for understanding the nucleonnucleon(NN) correlations in nuclei. Herein, we develop the studies of NMD of 56Fe from the axially deformed relativistic mean-field(RMF) model. Moreover, we introduce the effects of NN correlation into the RMF model from phenomenological models basing on deuteron and nuclear matter. For the region k < kF, the effects of deformation on the NMD of the RMF model are investigated using the total and single-particle NMDs. For the region k > kF, the high-momentum components of the RMF model are modified by the effects of NN correlation, which agree with the experimental data. Comparing the NMD of relativistic and non-relativistic mean-field models, the relativistic effects on nuclear structures in momentum space are analyzed. Finally, by analogizing the tensor correlations in deuteron and Jastrow-type correlations in nuclear matter, the behaviors and contributions of NN correlations in 56Fe are further analyzed, which helps clarify the effects of the tensor force on the NMD of heavy nuclei.
基金Project supported in part by the National Natural Science Foundation of China.
文摘On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. The thermal effects on the vacuum structure of strongly interacting matter are investigated, and the soliton field equation of the model is solved directly in the whole range of temperature via a numerical method. The phase structure of the system and the features of deconfining phase transition are analysed in detail. In addition, the collective excitations in the vacuum caused by thermal effects are investigated by making use of an order parameter which is given to describe the vacuum condensation at finite temperature. A physical mechanism and an intuitive picture are presented for the formation of QGP from both deconfined hardon matter and the vacuum excitation in relativistic heavy ion collisions.
基金Supported by National Basic Research Program of China (2009CB824800)National Natural Science Foundation of China (11103001)+1 种基金Hunan Provincial Natural Science Foundation of China (11JJ3006)Research Grants of Changsha University of Science and Technology,the Construct Program of the Key Discipline in Hunan Province and Aid Program for Science and Technology Innovative Research Team in Higher Educational Institute of Hunan Province
文摘We apply the derivative coupling model with ZM and ZM3 parameters to investigate the longitudinal response function in quasielastic electron scattering in the relativistic random phase approximation. The non-spectral method is chosen to describe the nucleon Green's function in a finite nucleus. Some remarks have been made in conclusion.