Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocks...Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .展开更多
This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in ot...This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.展开更多
The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating ...The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.展开更多
Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fab...Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.展开更多
In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of ...In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of space-time into positive and negative subspace-time. Here, in the second paper, we continue to analyze each of the four-dimensional vectors of velocity, acceleration, momentum, and forces on the total space-time fabric. According to the approach followed in the first paper. As a result, in the special case, we obtain new transformations for each of the velocity, acceleration, momentum, energy, and forces specific to each subspace-time, which are subject to the positive and negative modified Lorentz transformations described in the first paper. According to these transformations, momentum remains a conserved quantity in the positive subspace and increases in the negative subspace, while the relativistic total energy decreases in the positive subspace and increases in the negative subspace. In the general case, we also have new types of energy-momentum tensor, one for positive subspace-time and the other for negative subspace-time, where the energy density decreases in positive subspace-time and increases in negative subspace-time, and we also obtain new gravitational field equations for each subspace-time.展开更多
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A...The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.展开更多
A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<...A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.展开更多
Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The ...Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The actual aim, however, is an additional analysis of the physical and para-physical phenomena’ behavior as we formally transport observable mechanical phenomena [motion] to non-real interior of the complex domain. As it turns out, such procedure, when properly set, corresponds to transition from relativistic to more classic (or, possibly, just classic) kind of the motion. This procedure, we call the “Newtonization of relativistic physical quantities and phenomena”, first of all, includes the mechanical motion’s characteristics in the C3. The algebraic structure of vector spaces was imposed and analyzed on both: the set of all relativistic velocities and on the set of the corresponding to them “Galilean” velocities. The key point of the analysis is realization that, as a matter of fact, the relativistic theory and the classical are equivalent at least as for the kinematics. This conclusion follows the fact that the two defined structures of topological vector spaces i.e., the structure imposed on sets of all relativistic velocities and the structure on set of all “Galilean” velocities, are both diffeomorphic in their topological parts and are isomorphic as the vector spaces. As for the relativistic theory, the two approaches: the hyperbolic (“classical” SR) with its four-vector formalism and Euclidean, where SR is modeled by the complex para-space C3, were analyzed and compared.展开更多
Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articl...Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.展开更多
An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic rela...An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.展开更多
The principles of special relativity and Einstein’s simple derivation of the Lorentz transformation are reviewed. A new simple derivation of the Lorentz transformation is developed in this paper, by a new approach of...The principles of special relativity and Einstein’s simple derivation of the Lorentz transformation are reviewed. A new simple derivation of the Lorentz transformation is developed in this paper, by a new approach of light-pulse observation or time-dilation observation. Therefore, under the two principles of special relativity, there exist two equivalent simple derivations of or two equivalent approaches to the Lorentz transformation. Einstein’s approach emphasizes or highlights relativity of space while our approach emphasizes or highlights relativity of time. This research reveals, in a particular way, the equivalence of relativity of space and relativity of time in special relativity. Combination of Einstein’s approach and the approach developed in this paper makes the methodology of simple derivation of the Lorentz transformation complete and perfect.展开更多
The de Sitter special relativity on the Beltrami-de Sitter-spacetime and Snyder's model in the momentum space can be combined together with an IR-UV duality to get the complete Yang model at both classical and quantu...The de Sitter special relativity on the Beltrami-de Sitter-spacetime and Snyder's model in the momentum space can be combined together with an IR-UV duality to get the complete Yang model at both classical and quantum levels, which are related by the proposed Killing quantization. It is actually a special relativity based on the principle of relativity of three universal constants (c, ρp, R).展开更多
This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“sp...This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“space-time”) with and without matter embedded. They are useful for having a mental picture of space-time relationships without having to picture 4-dimensional manifolds, which very few students and scientists are able to do. With the aid of the optical lensing definition of curvature as inverse radius, a new gravitational force equation is derived, which also incorporates Einstein’s mass/energy relation in the <em>m</em><sub><em>x</em></sub> term. Thus, one may see how it is that gravitational force correlates with its time-embedded curvature-squared (<span style="white-space:nowrap;"><em>C</em><sub><em>x</em></sub><sup style="margin-left:-7px;"><em>2</em></sup></span>) space in a more accurate formulation than could be envisioned by Newton. This becomes more apparent in high gamma fields, such as found near a black hole horizon. It is hoped that probability theories, such as quantum field theories in curved space-time, might be adaptable to the general relativity isoframe concept introduced herein.展开更多
Sapir-Whorf Hypothesis is controversial, but the Linguistic Relativity is universally accepted by scholars. Through ana lyzing the causes of the mistakes that students often make during English learning and the relati...Sapir-Whorf Hypothesis is controversial, but the Linguistic Relativity is universally accepted by scholars. Through ana lyzing the causes of the mistakes that students often make during English learning and the relationship among thoughts, cultures and languages, this paper argues that language can influence people's thoughts and people's thoughts can influence the acquisi tion of a second language.展开更多
The GPS satellite clock corrections (along with gravitational redshift) which are necessary for the proper operation of the GPS are fully described without invoking relativity theory as is the practice today.
Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that br...Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is shown how Newton could also have derived length contraction . Einstein’s General Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravitational waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is revisited to show that in 1717 Newton could have derived the modern , and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others.展开更多
Synchronization of quantum mechanics with relativity has been considered differently from the present quantum gravity models. It is originated from the roots of philosophy of physics and the basic concepts of relativi...Synchronization of quantum mechanics with relativity has been considered differently from the present quantum gravity models. It is originated from the roots of philosophy of physics and the basic concepts of relativity & quantum mechanics. It emphasizes the fact that two conscious observers are necessary to experience one conscious moment. Various concepts of consciousness have been discussed and emphasized the necessity for the introduction of a new model of quantum consciousness. A quantum coordinate system has been introduced to explain the present understanding of the phenomena “observation” and “reality”. It has been elaborated that the observation defined by physics is confined to Lorentz space time coordinate system, Minkowski coordinate system and general relativity. But phenomena of observation cannot be completed without considering one more hidden transformation explaining quantum coordinate system which transforms the quantum states into relativistic coordinate system as an interaction between two conscious observers explained by an interactive mechanism of quantum states. A flow chart has been illustrated by a mechanism giving rise to conscious moment and proposed a new model of consciousness. It emphasizes on the fact that “reality” is different from “observation” defined by physics. It affects the relativistic factor of special relativity and suggests a modification for it. If this modified relativistic factor is proved experimentally, the results establish consciousness’s mechanism and a remarkable breakthrough in physics of consciousness studies.展开更多
Did any physics experts expect SUPERRELATIVITY paper, a physics revolution producing the EINSTEIN-RODGERS RELATIVITY EQUATION, producing the HAWKING-RODGERS BLACK HOLE RADIUS, and producing the STEFAN-BOLTZMANN-SCHWAR...Did any physics experts expect SUPERRELATIVITY paper, a physics revolution producing the EINSTEIN-RODGERS RELATIVITY EQUATION, producing the HAWKING-RODGERS BLACK HOLE RADIUS, and producing the STEFAN-BOLTZMANN-SCHWARZSCHILD-HAWKING-RODGERS BLACK HOLE RADIATION POWER LAW, as the author gave a solution to The Clay Mathematics Institute’s very difficult problem about the Navier-Stokes Equations? The Clay Mathematics Institute in May 2000 offered that great $million prize to the first person providing a solution for a specific statement of the problem: “Prove or give a counter-example of the following statement: In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes Equations.” Did I, the creator of this paper, expect SUPERRELATIVITY to become a sophisticated conversion of my unified field theory ideas and mathematics into a precious fluid dynamics paper to help mathematicians, engineers and astro-physicists? [1]. Yes, but I did not expect such superb equations that can be used in medicine or in outer space! In this paper, complicated equations for multi-massed systems become simpler equations for fluid dynamic systems. That simplicity is what is great about the Navier-Stokes Equations. Can I delve deeply into adding novel formulae into the famous Schwarzschild’s equation? Surprisingly, yes I do! Questioning the concept of reversibility of events with time, I suggest possible 3-dimensional and 4-dimensional co-ordinate systems that seem better than what Albert Einstein used, and I suggest possible modifications to Maxwell’s Equations. In SUPERRELATIVITY, I propose that an error exists in Albert Einstein’s Special Relativity equations, and that error is significant because it leads to turbulence in the universe’s fluids including those in our human bodies. Further, in SUPERRELATIVITY, after I create Schwarzschild-based equations that enable easy derivation of the Navier-Stokes Equations, I suddenly create very interesting exponential energy equations that simplify physics equations, give a mathematical reason for turbulence in fluids, give a mathematical reason for irreversibility of events with time, and enable easy derivation of the Navier-Stokes Equations. Importantly, my new exponential Navier-Stokes Equations are actually wave equations as should be used in Fluid Dynamics. Thrilled by my success, I challenge famous equations by Albert Einstein and Stephen Hawking [2] [3].展开更多
An attempt to epistemological completion of formal-math theories of relativity is presented. Causal interpretations of SR and GR are suggested. The problem to physical gist of gravity is explained as a contradiction o...An attempt to epistemological completion of formal-math theories of relativity is presented. Causal interpretations of SR and GR are suggested. The problem to physical gist of gravity is explained as a contradiction of cognition vs. intuition. Gravity phenomena are represented as unexplored peculiarity of basic particles. The gravity constant is deduced from the known parameters of the electron.展开更多
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
文摘Einstein defined clock synchronization whenever photon pulses with timetags traverse a fixed distance between two clocks with equal time spans ineither direction. Using the second relativity postulate, he found clocksmounted on a rod uniformly moving parallel with the rod’s length cannot besynchronized, but clocks attached to a stationary rod can. He dismissed thisdiscrepancy by claiming simultaneity and clock synchronization were not commonbetween inertial frames, but this paper proves with both Galilean and Lorentztransformations that simultaneity and clock synchronization are preservedbetween inertial frames. His derivation means moving clocks can never besynchronized in a “resting” inertial frame. Ultraprecise atomic clocks intimekeeping labs daily contradict his results. No algebraic error occurred inEinstein’s derivations. The two cases of clocksattached to a rod reveal three major conflicts with the currentsecond postulate. The net velocity between a photon source and detector plusthe “universal” velocity c is mathematically equivalent toEinstein’s clock synchronization method. As the ultraprecise timekeepingcommunity daily synchronizes atomic clocks on the moving Earth withultraprecise time uncertainty well below Einstein’s lowest limit ofsynchronization, the theoretical resolution of the apparent conflict isaccomplished by expanding the second relativity postulate to incorporate thenet velocity between the photon source and detector with the emitted velocity c as components of the total velocity c. This means the magnitudeof the total photon velocity can exceed the speed limit (299792458 m/s) set by the standard velocity c. .
文摘This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.
文摘The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.
文摘Analysis of a four-dimensional displacement vector on the fabric of space-time in the special or general case into two Four-dimensional vectors, according to specific conditions leads to the splitting of the total fabric of space-time into a positive subspace-time that represents the space of causality and a negative subspace-time which represents a space without causality, thus, in the special case, we have new transformations for the coordinates of space and time modified from Lorentz transformations specific to each subspace, where the contraction of length disappears and the speed of light is no longer a universal constant. In the general case, we have new types of matric tensor, one for positive subspace-time and the other for negative subspace-time. We also find that the speed of the photon decreases in positive subspace-time until it reaches zero and increases in negative subspace-time until it reaches the speed of light when the photon reaches the Schwarzschild radius.
文摘In the second paper on the inverse relativity model, we explained in the first paper [1] that analyzing the four-dimensional displacement vector on space-time according to a certain approach leads to the splitting of space-time into positive and negative subspace-time. Here, in the second paper, we continue to analyze each of the four-dimensional vectors of velocity, acceleration, momentum, and forces on the total space-time fabric. According to the approach followed in the first paper. As a result, in the special case, we obtain new transformations for each of the velocity, acceleration, momentum, energy, and forces specific to each subspace-time, which are subject to the positive and negative modified Lorentz transformations described in the first paper. According to these transformations, momentum remains a conserved quantity in the positive subspace and increases in the negative subspace, while the relativistic total energy decreases in the positive subspace and increases in the negative subspace. In the general case, we also have new types of energy-momentum tensor, one for positive subspace-time and the other for negative subspace-time, where the energy density decreases in positive subspace-time and increases in negative subspace-time, and we also obtain new gravitational field equations for each subspace-time.
文摘The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.
文摘A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.
文摘Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The actual aim, however, is an additional analysis of the physical and para-physical phenomena’ behavior as we formally transport observable mechanical phenomena [motion] to non-real interior of the complex domain. As it turns out, such procedure, when properly set, corresponds to transition from relativistic to more classic (or, possibly, just classic) kind of the motion. This procedure, we call the “Newtonization of relativistic physical quantities and phenomena”, first of all, includes the mechanical motion’s characteristics in the C3. The algebraic structure of vector spaces was imposed and analyzed on both: the set of all relativistic velocities and on the set of the corresponding to them “Galilean” velocities. The key point of the analysis is realization that, as a matter of fact, the relativistic theory and the classical are equivalent at least as for the kinematics. This conclusion follows the fact that the two defined structures of topological vector spaces i.e., the structure imposed on sets of all relativistic velocities and the structure on set of all “Galilean” velocities, are both diffeomorphic in their topological parts and are isomorphic as the vector spaces. As for the relativistic theory, the two approaches: the hyperbolic (“classical” SR) with its four-vector formalism and Euclidean, where SR is modeled by the complex para-space C3, were analyzed and compared.
文摘Instead of relying on the erroneous principles of Special Relativity, this paper proposes a new theory based on the emission of photons by a source and their re-emission by a transparent medium. Through over 60 articles, we have demonstrated that Special Relativity is based on optical experiments and observations that have been incorrectly explained by the theory of a non-existent ether. Our findings show that all known experiments can be explained using classical concepts of space and time, thereby refuting the theory of relativity. This article also addresses the fallacy of the widely accepted etheric Doppler effects and its significant role in the history of science.
基金The National Natural Science Foundation of China(No.50674086)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060290508)the Science and Technology Fund of China University of Mining and Technology(No.2007B016)
文摘An association rules mining method based on semantic relativity is proposed to solve the problem that there are more candidate item sets and higher time complexity in traditional association rules mining.Semantic relativity of ontology concepts is used to describe complicated relationships of domains in the method.Candidate item sets with less semantic relativity are filtered to reduce the number of candidate item sets in association rules mining.An ontology hierarchy relationship is regarded as a directed acyclic graph rather than a hierarchy tree in the semantic relativity computation.Not only direct hierarchy relationships,but also non-direct hierarchy relationships and other typical semantic relationships are taken into account.Experimental results show that the proposed method can reduce the number of candidate item sets effectively and improve the efficiency of association rules mining.
文摘The principles of special relativity and Einstein’s simple derivation of the Lorentz transformation are reviewed. A new simple derivation of the Lorentz transformation is developed in this paper, by a new approach of light-pulse observation or time-dilation observation. Therefore, under the two principles of special relativity, there exist two equivalent simple derivations of or two equivalent approaches to the Lorentz transformation. Einstein’s approach emphasizes or highlights relativity of space while our approach emphasizes or highlights relativity of time. This research reveals, in a particular way, the equivalence of relativity of space and relativity of time in special relativity. Combination of Einstein’s approach and the approach developed in this paper makes the methodology of simple derivation of the Lorentz transformation complete and perfect.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10701081,10975167,and 10875129
文摘The de Sitter special relativity on the Beltrami-de Sitter-spacetime and Snyder's model in the momentum space can be combined together with an IR-UV duality to get the complete Yang model at both classical and quantum levels, which are related by the proposed Killing quantization. It is actually a special relativity based on the principle of relativity of three universal constants (c, ρp, R).
文摘This brief note introduces the conceptual framework of special and general relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, can be used to create geometrical maps of space and time (“space-time”) with and without matter embedded. They are useful for having a mental picture of space-time relationships without having to picture 4-dimensional manifolds, which very few students and scientists are able to do. With the aid of the optical lensing definition of curvature as inverse radius, a new gravitational force equation is derived, which also incorporates Einstein’s mass/energy relation in the <em>m</em><sub><em>x</em></sub> term. Thus, one may see how it is that gravitational force correlates with its time-embedded curvature-squared (<span style="white-space:nowrap;"><em>C</em><sub><em>x</em></sub><sup style="margin-left:-7px;"><em>2</em></sup></span>) space in a more accurate formulation than could be envisioned by Newton. This becomes more apparent in high gamma fields, such as found near a black hole horizon. It is hoped that probability theories, such as quantum field theories in curved space-time, might be adaptable to the general relativity isoframe concept introduced herein.
文摘Sapir-Whorf Hypothesis is controversial, but the Linguistic Relativity is universally accepted by scholars. Through ana lyzing the causes of the mistakes that students often make during English learning and the relationship among thoughts, cultures and languages, this paper argues that language can influence people's thoughts and people's thoughts can influence the acquisi tion of a second language.
文摘The GPS satellite clock corrections (along with gravitational redshift) which are necessary for the proper operation of the GPS are fully described without invoking relativity theory as is the practice today.
文摘Einstein’s Special Relativity (ESR) has enjoyed spectacular success as a mathematical construct and in terms of the experiments to which it has been subjected. Possible vulnerabilities of ESR will be explored that break the symmetry of reciprocal observations of length, time, and mass. It is shown how Newton could also have derived length contraction . Einstein’s General Relativity (EGR) will also be discussed occasionally such as a changed perspective on gravitational waves due to a small change in ESR. Some additional questions addressed are: Did Einstein totally eliminate the Ether? Is the physical interpretation of ESR completely correct? Why should there be a maximum speed limit, and should it always be the same? The mass-energy equation is revisited to show that in 1717 Newton could have derived the modern , and not known that it violates the foundation of his mechanics. Tributes are paid to Einstein and others.
文摘Synchronization of quantum mechanics with relativity has been considered differently from the present quantum gravity models. It is originated from the roots of philosophy of physics and the basic concepts of relativity & quantum mechanics. It emphasizes the fact that two conscious observers are necessary to experience one conscious moment. Various concepts of consciousness have been discussed and emphasized the necessity for the introduction of a new model of quantum consciousness. A quantum coordinate system has been introduced to explain the present understanding of the phenomena “observation” and “reality”. It has been elaborated that the observation defined by physics is confined to Lorentz space time coordinate system, Minkowski coordinate system and general relativity. But phenomena of observation cannot be completed without considering one more hidden transformation explaining quantum coordinate system which transforms the quantum states into relativistic coordinate system as an interaction between two conscious observers explained by an interactive mechanism of quantum states. A flow chart has been illustrated by a mechanism giving rise to conscious moment and proposed a new model of consciousness. It emphasizes on the fact that “reality” is different from “observation” defined by physics. It affects the relativistic factor of special relativity and suggests a modification for it. If this modified relativistic factor is proved experimentally, the results establish consciousness’s mechanism and a remarkable breakthrough in physics of consciousness studies.
文摘Did any physics experts expect SUPERRELATIVITY paper, a physics revolution producing the EINSTEIN-RODGERS RELATIVITY EQUATION, producing the HAWKING-RODGERS BLACK HOLE RADIUS, and producing the STEFAN-BOLTZMANN-SCHWARZSCHILD-HAWKING-RODGERS BLACK HOLE RADIATION POWER LAW, as the author gave a solution to The Clay Mathematics Institute’s very difficult problem about the Navier-Stokes Equations? The Clay Mathematics Institute in May 2000 offered that great $million prize to the first person providing a solution for a specific statement of the problem: “Prove or give a counter-example of the following statement: In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier-Stokes Equations.” Did I, the creator of this paper, expect SUPERRELATIVITY to become a sophisticated conversion of my unified field theory ideas and mathematics into a precious fluid dynamics paper to help mathematicians, engineers and astro-physicists? [1]. Yes, but I did not expect such superb equations that can be used in medicine or in outer space! In this paper, complicated equations for multi-massed systems become simpler equations for fluid dynamic systems. That simplicity is what is great about the Navier-Stokes Equations. Can I delve deeply into adding novel formulae into the famous Schwarzschild’s equation? Surprisingly, yes I do! Questioning the concept of reversibility of events with time, I suggest possible 3-dimensional and 4-dimensional co-ordinate systems that seem better than what Albert Einstein used, and I suggest possible modifications to Maxwell’s Equations. In SUPERRELATIVITY, I propose that an error exists in Albert Einstein’s Special Relativity equations, and that error is significant because it leads to turbulence in the universe’s fluids including those in our human bodies. Further, in SUPERRELATIVITY, after I create Schwarzschild-based equations that enable easy derivation of the Navier-Stokes Equations, I suddenly create very interesting exponential energy equations that simplify physics equations, give a mathematical reason for turbulence in fluids, give a mathematical reason for irreversibility of events with time, and enable easy derivation of the Navier-Stokes Equations. Importantly, my new exponential Navier-Stokes Equations are actually wave equations as should be used in Fluid Dynamics. Thrilled by my success, I challenge famous equations by Albert Einstein and Stephen Hawking [2] [3].
文摘An attempt to epistemological completion of formal-math theories of relativity is presented. Causal interpretations of SR and GR are suggested. The problem to physical gist of gravity is explained as a contradiction of cognition vs. intuition. Gravity phenomena are represented as unexplored peculiarity of basic particles. The gravity constant is deduced from the known parameters of the electron.