Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterativ...Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.展开更多
The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental ...The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.展开更多
In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent im...In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.展开更多
In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with...In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with an improved iteration format was derived and applied to solution of large sparse symmetric positive definite linear equations in the computational process of the finite element analysis. A three-dimensional simulation program for massive concrete was developed based on SSOR-PCGM with an improved iteration format. Then, the programs based on the direct method and SSOR-PCGM with an improved iteration format were used for computation of the Guandi roller compacted concrete (RCC) gravity dam and an elastic cube under free expansion. The comparison and analysis of the computational results show that SSOR-PCGM with the improved iteration format occupies much less physical memory and can solve larger-scale problems with much less computing time and flexible control of accuracy.展开更多
Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive d...Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.展开更多
A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot...A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.展开更多
Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting met...Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.展开更多
For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable c...For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable conditions. This method not only unifies the discussions of various existing asynchronous multisplitting iterations, but also affords new algorithmic and theoretical results for the parallel solution of large sparse system of linear equations. Besides its generality, this method is also much more suitable for implementing on the MIMD multiprocessor systems.展开更多
Presents a class of relaxed asynchronous parallel multisplitting iterative methods for solving the linear complementarity problem on multiprocessor systems. Establishment of the methods; Convergence theories; Numerica...Presents a class of relaxed asynchronous parallel multisplitting iterative methods for solving the linear complementarity problem on multiprocessor systems. Establishment of the methods; Convergence theories; Numerical results.展开更多
基金Supported by the National Natural Science Foundation of China(61272300)
文摘Two kinds of iterative methods are designed to solve the linear system of equations, we obtain a new interpretation in terms of a geometric concept. Therefore, we have a better insight into the essence of the iterative methods and provide a reference for further study and design. Finally, a new iterative method is designed named as the diverse relaxation parameter of the SOR method which, in particular, demonstrates the geometric characteristics. Many examples prove that the method is quite effective.
文摘The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
文摘In this paper, a class of smoothing modulus-based iterative method was presented for solving implicit complementarity problems. The main idea was to transform the implicit complementarity problem into an equivalent implicit fixed-point equation, then introduces a smoothing function to obtain its approximation solutions. The convergence analysis of the algorithm was given, and the efficiency of the algorithms was verified by numerical experiments.
基金supported by the National Natural Science Foundation of China (Grant No.50808066)
文摘In this study, for the purpose of improving the efficiency and accuracy of numerical simulation of massive concrete, the symmetric successive over relaxation-preconditioned conjugate gradient method (SSOR-PCGM) with an improved iteration format was derived and applied to solution of large sparse symmetric positive definite linear equations in the computational process of the finite element analysis. A three-dimensional simulation program for massive concrete was developed based on SSOR-PCGM with an improved iteration format. Then, the programs based on the direct method and SSOR-PCGM with an improved iteration format were used for computation of the Guandi roller compacted concrete (RCC) gravity dam and an elastic cube under free expansion. The comparison and analysis of the computational results show that SSOR-PCGM with the improved iteration format occupies much less physical memory and can solve larger-scale problems with much less computing time and flexible control of accuracy.
基金Subsidized by The Special Funds For Major State Basic Research Projects G1999032803.
文摘Asynchronous parallel multisplitting relaxation methods for solving large sparse linear complementarity problems are presented, and their convergence is proved when the system matrices are H-matrices having positive diagonal elements. Moreover, block and multi-parameter variants of the new methods, together with their convergence properties, are investigated in detail. Numerical results show that these new methods can achieve high parallel efficiency for solving the large sparse linear complementarity problems on multiprocessor systems.
文摘A mathematical model is elaborated for a thermoelastic infinite body with a spherical cavity.A generalized set of governing equations is formulated in the context of three different models of thermoelasticity:the Biot model,also known as“coupled thermoelasticity”model;the Lord-Shulman model,also referred to as“generalized thermoelasticity with one-relaxation time”approach;and the Green-Lindsay model,also called“generalized thermoelasticity with two-relaxation times”approach.The Adomian’s decomposition method is used to solve the related mathematical problem.The bounding plane of the cavity is subjected to harmonic thermal loading with zero heat flux and strain.Numerical results for the temperature,radial stress,strain,and displacement are represented graphically.It is shown that the angular thermal load and the relaxation times have significant effects on all the studied fields.
基金the National Natural Science Foundation of China (19601036) and Subsidized by the SpecialFunds for Major State Basic Research
文摘Focuses on a study which presented a parallel chaotic multisplitting method for solving the large sparse linear complementarity problem. Preliminaries of the study; Equations of the parallel chaotic multisplitting method; Information on the convergence theories; Details on the parallel chaotic multisplitting relaxation methods.
文摘For the large sparse systems of linear and nonlinear equations, a new class of generalized asynchronous parallel multisplitting iterative method is presented, and its convergence theory is established under suitable conditions. This method not only unifies the discussions of various existing asynchronous multisplitting iterations, but also affords new algorithmic and theoretical results for the parallel solution of large sparse system of linear equations. Besides its generality, this method is also much more suitable for implementing on the MIMD multiprocessor systems.
基金The Special Funds For Major State Basic Research Project G1999032803.
文摘Presents a class of relaxed asynchronous parallel multisplitting iterative methods for solving the linear complementarity problem on multiprocessor systems. Establishment of the methods; Convergence theories; Numerical results.