The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent m...The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent method for this class of variational inequalities is introduced. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.展开更多
基金Project supported by the Key Science Foundation of Education Department of Sichuan Province of China (No.2003A081)Sichuan Province Leading Academic Discipline Project (No.SZD0406)
文摘The classical variational inequality problem with a Lipschitzian and strongly monotone operator on a nonempty closed convex subset in a real Hilbert space is studied. A new three-step relaxed hybrid steepest-descent method for this class of variational inequalities is introduced. Strong convergence of this method is established under suitable assumptions imposed on the algorithm parameters.