In this paper, we study an energy efficient multi-antenna unmanned aerial vehicle(UAV)-enabled half-duplex mobile relaying system under Rician fading channels. By assuming that the UAV follows a circular trajectory at...In this paper, we study an energy efficient multi-antenna unmanned aerial vehicle(UAV)-enabled half-duplex mobile relaying system under Rician fading channels. By assuming that the UAV follows a circular trajectory at fixed altitude and applying the decode-and-forward relaying strategy, we maximize the energy efficiency by jointly designing beamforming, power allocation, circular radius and flight speed, subject to the sum transmit power constraint on source node and UAV relay node. First, we maximize the end-to-end signal-to-noise ratio by jointly designing beamforming and statistical power allocation. Based on the obtained beamforming and power allocation results, we then obtain a semi closed-form expression of energy efficiency, and finally maximize energy efficiency by optimizing flight speed and circular radius, allowing optimal circular radius to be obtained via numerical computation. Numerical results demonstrate that the proposed scheme can effectively enhance the system energy efficiency.展开更多
This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the ...This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.展开更多
Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim...Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.展开更多
In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destinati...In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.展开更多
With the development of Unmanned Aerial Vehicles(UAVs), the applications of UAVs have been extensively explored. In the field of wireless communications, the relay nodes are often used to extend network coverage. Howe...With the development of Unmanned Aerial Vehicles(UAVs), the applications of UAVs have been extensively explored. In the field of wireless communications, the relay nodes are often used to extend network coverage. However, traditional fixed ground relays cannot be flexibly deployed due to their low heights and fixed locations. Hence, deploying UAV as relay node is a promising solution and has become a research hotspot. In this paper, we consider an UAVenabled relaying network in which a fixed-wing UAV is deployed between the Base Station(BS)and Ground Users(GUs). We study the energy-efficiency gap between the link “BS-UAV-GUs”and the link “BS-GUs”, and jointly optimize UAV relay transmission power and flight radius to achieve the highest energy-efficiency. Firstly, the UAV/BS-GUs channels models and the UAV energy consumption model are built. Secondly, the optimization objective function is formulated to maximize the energy-efficiency gap. Then, the solution of the optimization problem is divided into a two-step iteration process, in which the UAV relay transmission power and flight radius are adjusted to maximize the energy-efficiency gap. Finally, the experimental results under different simulation scenarios(such as cities, forests, deserts, oceans, etc.) are shown to illustrate the effectiveness of the proposed algorithm. The results show that the proposed algorithm can always find the optimal UAV relay transmission power and flight radius settings, and achieve the largest energy-efficiency gap. The convergency speed of the proposed algorithm is fast, and can obtain the optimal solution within only a few iterations.展开更多
基金supported in part by the National Science Foundation (NSFC) for Distinguished Young Scholars of China with Grant 61625106the National Natural Science Foundation of China under Grant 61531011
文摘In this paper, we study an energy efficient multi-antenna unmanned aerial vehicle(UAV)-enabled half-duplex mobile relaying system under Rician fading channels. By assuming that the UAV follows a circular trajectory at fixed altitude and applying the decode-and-forward relaying strategy, we maximize the energy efficiency by jointly designing beamforming, power allocation, circular radius and flight speed, subject to the sum transmit power constraint on source node and UAV relay node. First, we maximize the end-to-end signal-to-noise ratio by jointly designing beamforming and statistical power allocation. Based on the obtained beamforming and power allocation results, we then obtain a semi closed-form expression of energy efficiency, and finally maximize energy efficiency by optimizing flight speed and circular radius, allowing optimal circular radius to be obtained via numerical computation. Numerical results demonstrate that the proposed scheme can effectively enhance the system energy efficiency.
基金supported by the National Natural Science Foundation of China(61671474).
文摘This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.
文摘Free space optical(FSO)communication has recently aroused great interest in academia due to its unique features,such as large transmission band,high data rates,and strong anti-electromagnetic interference.With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance,we propose an unmanned aerial vehicle(UAV)-assisted dual-hop FSO communication system equipped with amplifyand-forward protocol at the relay node.Specifically,we consider impairments of atmospheric absorption,pointing errors,atmospheric turbulence,and link interruptions due to angle-of-arrival fluctuations in the relay system.The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAVto-destination links,respectively.We derive closedform expressions of the probability density function(PDF)and cumulative distribution function(CDF)for the proposed communication system,in terms of the Meijer-G function.Based on the precise PDF and CDF,analytical expressions for the outage probability,average bit error rate,and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox’s H function.Finally,we show that there is a match between the analytical results and numerical results,and we analyze the influence of the system and channel parameters on the performance.
基金co-supported by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Natural Science Foundation of China(Nos.61871398 and 61931011)the National Key R&D Program of China(No.2018YFB1801103)。
文摘In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.
基金supported in part by Shanghai Rising-Star Program(No.19QA1409100)in part by the National Natural Science Foundation of China(Nos.62071332,61631017 and U1733114)+1 种基金in part by the Fundamental Research Funds for the Central Universities,China。
文摘With the development of Unmanned Aerial Vehicles(UAVs), the applications of UAVs have been extensively explored. In the field of wireless communications, the relay nodes are often used to extend network coverage. However, traditional fixed ground relays cannot be flexibly deployed due to their low heights and fixed locations. Hence, deploying UAV as relay node is a promising solution and has become a research hotspot. In this paper, we consider an UAVenabled relaying network in which a fixed-wing UAV is deployed between the Base Station(BS)and Ground Users(GUs). We study the energy-efficiency gap between the link “BS-UAV-GUs”and the link “BS-GUs”, and jointly optimize UAV relay transmission power and flight radius to achieve the highest energy-efficiency. Firstly, the UAV/BS-GUs channels models and the UAV energy consumption model are built. Secondly, the optimization objective function is formulated to maximize the energy-efficiency gap. Then, the solution of the optimization problem is divided into a two-step iteration process, in which the UAV relay transmission power and flight radius are adjusted to maximize the energy-efficiency gap. Finally, the experimental results under different simulation scenarios(such as cities, forests, deserts, oceans, etc.) are shown to illustrate the effectiveness of the proposed algorithm. The results show that the proposed algorithm can always find the optimal UAV relay transmission power and flight radius settings, and achieve the largest energy-efficiency gap. The convergency speed of the proposed algorithm is fast, and can obtain the optimal solution within only a few iterations.