This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in w...This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTR...To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.展开更多
In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided ...In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.展开更多
In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify ...In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.展开更多
Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and t...Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and the useful signal spans all available spatial dimensions. In order to improve the performance of two-way relay network, we can use rank constrained rank minimization(RCRM) to solve the IA problem. This paper proposes left reweighted nuclear norm minimization-γalgorithm and selective coupling reweighted nuclear norm minimization algorithm to implement interference alignment in two-way relay networks. The left reweighted nuclear norm minimization-γ algorithm is based on reweighted nuclear norm minimization algorithm and has a novel γ choosing rule. The selective coupling reweighted nuclear norm minimization algorithm weighting methods choose according to singular value of interference matrixes. Simulation results show that the proposed algorithms considerably improve the sum rate performance and achieve the higher average achievable multiplexing gain in two-way relay interference networks.展开更多
In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes ...In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.展开更多
Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports...Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.展开更多
In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy...In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.展开更多
A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a n...A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a network. Based on the highest achievable rate of the relay channels, this paper considers a cognitive radio relay network where the secondary transmitter communicates with the receiver through the best relay node under the peak power constraint of a primary receiver. Intuitively, the secondary transmission can benefit from an intermediate relay node chosen from N possible nodes. To quantify this benefit, outage probability of cognitive radio relay networks is derived and also the closed-form expressions for outage capacity and ergodic capacity of cognitive radio relay networks are obtained in Rayleigh fading channels. Numerical simulation results are provided to show that the outage capacity and ergodic capacity benefit tremendously by properly increasing the number of relaying nodes.展开更多
This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit po...This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.展开更多
To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the cl...To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.展开更多
In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter...In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption展开更多
Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish lo...Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.展开更多
Network capacity is a key characteristic to evaluate the performance of wireless networks, The goal of this paper is to study the capacity of wireless ad hoe relay network. In the model, there is at lnost ns source no...Network capacity is a key characteristic to evaluate the performance of wireless networks, The goal of this paper is to study the capacity of wireless ad hoe relay network. In the model, there is at lnost ns source nodes transmitting signal simultaneously in the network and the arbitrarily complex network coding is allowed. The upper capacity bound of the network model are derived From the max-flow rain-cut theorem and the lower capacity bound are obtained by the rate-distortion function For the Gaussian source. Finally, simulation results show that the upper network capacity will decrease as the number of source nodes is increased.展开更多
Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifi...Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal^to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network.展开更多
In orthogonal frequency-division multiplexing (OFDM) amplify-and-forward (AF) relay networks,in order to exploit diversity gains over frequency-selective fading channels,the receiver needs to acquire the knowledge...In orthogonal frequency-division multiplexing (OFDM) amplify-and-forward (AF) relay networks,in order to exploit diversity gains over frequency-selective fading channels,the receiver needs to acquire the knowledge of channel state information (CSI).In this article,based on the recent methodology of distributed compressed sensing (DCS),a novel channel estimation scheme is proposed.The joint sparsity model 2 (JSM-2) in DCS theory and simultaneous orthogonal matching pursuit (SOMP) are both introduced to improve the estimation performance and increase the spectral efficiency.Simulation results show that compared with current compressed sensing (CS) methods,the estimation error of our scheme is reduced dramatically in high SNR region while the pilot number is still kept small.展开更多
The transmission antennas of cooperative systems are spatially distributed on multiple nodes, so the received signal can be asynchronous due to propagation delays. A receiving scheme for cooperative relay networks is ...The transmission antennas of cooperative systems are spatially distributed on multiple nodes, so the received signal can be asynchronous due to propagation delays. A receiving scheme for cooperative relay networks is proposed, multiple asynchronous signals are reconstructed at the receiver by forward and backward interference cancellation, which can obtain gains of cooperative transmission diversity with obvious delay and with no requiring timing synchronization or orthogonal channelization between relays. Analysis and simulation show that the bit error rate(BER) of the proposed scheme is similar to Alamouti code, and the scheme has the diversity order of orthogonal transmission scheme accompanied by minimal BER losses. It is demonstrated that the performance can be further improved by adding an error correcting code(ECC).展开更多
This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. ...This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. By integrating the information theory with the concept of effective capacity, this article proposes a dynamic time allocation strategy over the wireless relay network that aims at maximizing the relay network throughput, subject to a given delay quality of service (QoS) constraint, where time division multiple access (TDMA) is applied in the relay network. The simulation results show that the proposed allocation strategy can significantly improve the effective capacity as compared to the traditional equal time allocation strategy.展开更多
In this paper, we investigate physical layer security for simultaneous wireless information and power transfer in amplify-and-forward relay networks. We propose a joint robust cooperative beamforming and artificial no...In this paper, we investigate physical layer security for simultaneous wireless information and power transfer in amplify-and-forward relay networks. We propose a joint robust cooperative beamforming and artificial noise scheme for secure communication and efficient wireless energy transfer. Specifically, by treating the energy receiver as a potential eavesdropper and assuming that only imperfect channel state information can be obtained, we formulate an optimization problem to maximize the worst-case secrecy rate between the source and the legitimate information receiver under both the power constraint at the relays and the wireless power harvest constraint at the energy receiver. Since such a problem is non-convex and hard to tackle, we propose a two-level optimization approach which involves a one-dimensional search and semidefinite relaxation. Simulation results show that the proposed robust scheme achieves better worst-case secrecy rate performance than other schemes.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61872098 and Grant 61902084the Natural Science Foundation of Guangdong Province under Grant 2017A030313363.
文摘This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
基金supported in part by the National Natural Science Foundation of China under Grant No.61871032in part by Chinese Ministry of Education-China Mobile Communication Corporation Research Fund under Grant MCM20170101in part by the Open Research Fund of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology) under Grant CRKL190204
文摘To integrate the satellite communications with the LTE/5G services, the concept of Hybrid Satellite Terrestrial Relay Networks(HSTRNs) has been proposed. In this paper, we investigate the secure transmission in a HSTRN where the eavesdropper can wiretap the transmitted messages from both the satellite and the intermediate relays. To effectively protect the message from wiretapping in these two phases, we consider cooperative jamming by the relays, where the jamming signals are optimized to maximize the secrecy rate under the total power constraint of relays. In the first phase, the Maximal Ratio Transmission(MRT) scheme is used to maximize the secrecy rate, while in the second phase, by interpolating between the sub-optimal MRT scheme and the null-space projection scheme, the optimal scheme can be obtained via an efficient one-dimensional searching method. Simulation results show that when the number of cooperative relays is small, the performance of the optimal scheme significantly outperforms that of MRT and null-space projection scheme. When the number of relays increases, the performance of the null-space projection approaches that of the optimal one.
基金supported by the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University under Grant No.RCS2012ZT008the National Key Basic Research Program of China(973Program)under Grant No.2012CB316100(2)+1 种基金the National Natural Science Foundation of China under Grants No.61201203,No.61171064the Fundamental Research Funds for the Central Universities under Grant No.2012JBM030
文摘In this paper, we first overview some traditional relaying technologies, and then present a Network Coding-Aware Cooperative Relaying (NC2R) scheme to improve the performance of downlink transmission for relayaided cellular networks. Moreover, systematic performance analysis and extensive simulations are performed for the proposed NC2R and traditional relaying and non-relaying schemes. The results show that NCR outperforms conventional relaying and non-relaying schemes in terms of blocking probability and spectral efficiency, especially for cell-edge users. Additionally, the location selections for relays with NCR are also discussed. These results will provide some insights for incorporating network coding into next-generation broadband cellular relay mobile systems.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,a low-cost electromagnetic structure emulating photonic nanojets is utilized to improve the efficiency of wireless relay networks.The spectral element method,due to its high accuracy,is used to verify the efficiency of the proposed structure by solving the associate field distribution.The application of optimal single-relay selection method shows that full diversity gain with low complexity can be achieved.In this paper,the proposed technique using smart relays combines the aforementioned two methods to attain the benefits of both methods by achieving the highest coding and diversity gain and enhances the overall network performance in terms of bit error rate(BER).Moreover,we analytically prove the advantage of using the proposed technique.In our simulations,it can be shown that the proposed technique outperforms the best known state-of-the-art single relay selection technique.Furthermore,the BER expressions obtained from the theoretical analysis are perfectly matched to those obtained from the conducted simulations.
基金supported by the National Science Foundation of China (NO.61271240, 61671253)
文摘Interference alignment(IA) is one of the promising measures for the multi-user network to manage interference. The rank constraints rank minimization means that interference spans the lowest dimensional subspace and the useful signal spans all available spatial dimensions. In order to improve the performance of two-way relay network, we can use rank constrained rank minimization(RCRM) to solve the IA problem. This paper proposes left reweighted nuclear norm minimization-γalgorithm and selective coupling reweighted nuclear norm minimization algorithm to implement interference alignment in two-way relay networks. The left reweighted nuclear norm minimization-γ algorithm is based on reweighted nuclear norm minimization algorithm and has a novel γ choosing rule. The selective coupling reweighted nuclear norm minimization algorithm weighting methods choose according to singular value of interference matrixes. Simulation results show that the proposed algorithms considerably improve the sum rate performance and achieve the higher average achievable multiplexing gain in two-way relay interference networks.
基金This work was supported by College of Engineering and Technology,the American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘In this article,we introduce a new bi-directional dual-relay selection strategy with its bit error rate(BER)performance analysis.During the first step of the proposed strategy,two relays out of a set of N relay-nodes are selected in a way to optimize the system performance in terms of BER,based on the suggested algorithm which checks if the selected relays using the maxmin criterion are the best ones.In the second step,the chosen relay-nodes perform an orthogonal space-time coding scheme using the two-phase relaying protocol to establish a bi-directional communication between the communicating terminals,leading to a significant improvement in the achievable coding and diversity gain.To further improve the overall system performance,the selected relay-nodes apply also a digital network coding scheme.Furthermore,this paper discusses the analytical approximation of the BER performance of the proposed strategy,where we prove that the analytical results match almost perfectly the simulated ones.Finally,our simulation results show that the proposed strategy outperforms the current state-of-the-art ones.
基金The article has been supported by the College of Engineering and Technology,American University of the Middle East,Kuwait.Homepage:https://www.aum.edu.kw.
文摘Rotman lens,which is a radio frequency beam-former that consists of multiple input and multiple output beam ports,can be used in industrial,scientific,and medical applications as a beam steering device.The input ports collect the signals to be propagated through the lens cavity toward the output ports before being transmitted by the antenna arrays to the destination in order to enhance the error performance by optimizing the overall signal to noise ratio(SNR).In this article,a low-cost Rotman lens antenna is designed and deployed to enhance the overall performance of the conventional cooperative communication systems without needing any additional power,extra time or frequency slots.In the suggested system,the smart Rotman lens antennas generate a beam steering in the direction of the destination to maximize the received SNR at the destination by applying the proposed optimal beamforming technique.The suggested optimal beamforming technique enjoys high diversity,as well as,low encoding and decoding complexity.Furthermore,we proved the advantages of our suggested strategy through both theoretical results and simulations using Monte Carlo runs.The Monte Carlo simulations show that the suggested strategy enjoys better error performance compared to the current state-of-the-art distributed multiantenna strategies.In addition,the bit error rate(BER)curves drawn from the analytical results are closely matching to those drawn from our conducted Monte Carlo simulations.
基金supported by the Natural Science Foundation of China under Grant No.62001517.
文摘In this paper,we investigate the secrecy outage performance for the two-way integrated satellite unmanned aerial vehicle relay networks with hardware impairments.Particularly,the closed-form expression for the secrecy outage probability is obtained.Moreover,to get more information on the secrecy outage probability in a high signalto-noise regime,the asymptotic analysis along with the secrecy diversity order and secrecy coding gain for the secrecy outage probability are also further obtained,which presents a fast method to evaluate the impact of system parameters and hardware impairments on the considered network.Finally,Monte Carlo simulation results are provided to show the efficiency of the theoretical analysis.
文摘A Cognitive radio communication link is possible to be interrupted easily when its physical channel suffers severe fading. Relay technology is an effective way to mitigate the fading effect of wireless channels in a network. Based on the highest achievable rate of the relay channels, this paper considers a cognitive radio relay network where the secondary transmitter communicates with the receiver through the best relay node under the peak power constraint of a primary receiver. Intuitively, the secondary transmission can benefit from an intermediate relay node chosen from N possible nodes. To quantify this benefit, outage probability of cognitive radio relay networks is derived and also the closed-form expressions for outage capacity and ergodic capacity of cognitive radio relay networks are obtained in Rayleigh fading channels. Numerical simulation results are provided to show that the outage capacity and ergodic capacity benefit tremendously by properly increasing the number of relaying nodes.
基金National Natural Science Foundation of China(No.61461024)
文摘This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
文摘To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output(MIMO)two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP)rate,false positive(FP)rate,precision,recall,F-Measure and receiver operating characteristic(ROC)area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case(i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal usingMultiBoostAB classifier with the decision tree(J48)classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.
基金Supported by the National High Technology Research and Development Programme of China (No. 2007AA01Z221, 2009AA01Z246) and the National Natural Science Foundation of China (No. 60832009).
文摘In order to resolve the relay selection problem in wireless mobile relay networks (WMRNs), a novel balanced energy-efficient mobile relay selection scheme is proposed in this paper. Compared with traditional counter-based algorithm, distance and energy consumption are considered from network respect to provide a better network lifetime performance in the proposed scheme. Also, it performs well when nodes move freely at high speed. A random assessment delay (RAD) mechanism is added to avoid collisions and improve transmission efficiency. Simulation results reveal that, the proposed scheme has advantages in prolonging network lifetime, balancing energy compared with existing counter-based scheme. consumption and reducing the total energy consumption
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Quantum transmission experiments have shown that the success-ful transmission rate of entangled quanta in optical fibers decreases expo-nentially.Although current quantum networks deploy quantum relays to establish long-distance connections,the increase in transmission distance and entanglement switching costs still need to be considered when selecting the next hop.However,most of the existing quantum network models prefer to consider the parameters of the physical layer,which ignore the influence factors of the network layer.In this paper,we propose a meshy quantum network model based on quantum teleportation,which considers both net-work layer and physical layer parameters.The proposed model can reflect the realistic transmission characteristics and morphological characteristics of the quantum relay network.Then,we study the network throughput of different routing algorithms with the same given parameters when multiple source-destination pairs are interconnected simultaneously.To solve the chal-lenges of routing competition caused by the simultaneous transmission,we present greedy memory-occupied algorithm Q-GMOA and random memory-occupied algorithm Q-RMOA.The proposed meshy quantum network model and the memory-occupied routing algorithms can improve the utilization rate of resources and the transmission performance of the quantum network.And the evaluation results indicate that the proposed methods embrace a higher transmission rate than the previous methods with repeater occupation.
基金Supported in part by the Chinese Ministry of Science and Technology for 863 Programs (No.2003AA12331005), and in part by the National Natural Science Foundation of China (No.60496351).
文摘Network capacity is a key characteristic to evaluate the performance of wireless networks, The goal of this paper is to study the capacity of wireless ad hoe relay network. In the model, there is at lnost ns source nodes transmitting signal simultaneously in the network and the arbitrarily complex network coding is allowed. The upper capacity bound of the network model are derived From the max-flow rain-cut theorem and the lower capacity bound are obtained by the rate-distortion function For the Gaussian source. Finally, simulation results show that the upper network capacity will decrease as the number of source nodes is increased.
基金supported by the National Natural Science Foundation of China (Nos. 61202351, 61271255)the Natural Science Foundation of Jiangsu Province (No. BK20131068)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory in Southeast University (No. 2012D15)the Funding of Jiangsu Innovation Program for Graduate Education (No. CXLX11_0202)the Fundamental Research Funds for the Central Universities
文摘Recently, unmanned aerial vehicles (UAVs) acting as relay platforms have attracted considerable attention due to the advantages of extending coverage and improving connectivity for long-range communications. Specifically, in the scenario where the access point (AP) is mobile, a UAV needs to find an efficient path to guarantee the connectivity of the relay link. Motivated by this fact, this paper proposes an optimal design for beamforming (BF) and UAV path planning. First of all, we study a dual-hop amplify-and-forward (AF) wireless relay network, in which a UAV is used as relay between a mobile AP and a fixed base station (BS). In the network, both of the AP and the BS are equipped with multiple antennas, whereas the UAV has a single antenna. Then, we obtain the output signal^to-noise ratio (SNR) of the dual-hop relay network. Based on the criterion of maximizing the output SNR, we develop an optimal design to obtain the solution of the optimal BF weight vector and the UAV heading angle. Next, we derive the closed-form outage probability (OP) expression to investigate the performance of the dual-hop relay network conveniently. Finally, computer simulations show that the proposed approach can obtain nearly optimal flying path and OP performance, indicating the effectiveness of the proposed algorithm. Furthermore, we find that increasing the antenna number at the BS or the maximal heading angle can significantly improve the performance of the considered relay network.
基金supported by the National Basic Research Program of China (2007CB310604)the National Natural Science Foundation of China (60702048)the Hi-Tech Research and Development Program of China (2009AA01Z233)
文摘In orthogonal frequency-division multiplexing (OFDM) amplify-and-forward (AF) relay networks,in order to exploit diversity gains over frequency-selective fading channels,the receiver needs to acquire the knowledge of channel state information (CSI).In this article,based on the recent methodology of distributed compressed sensing (DCS),a novel channel estimation scheme is proposed.The joint sparsity model 2 (JSM-2) in DCS theory and simultaneous orthogonal matching pursuit (SOMP) are both introduced to improve the estimation performance and increase the spectral efficiency.Simulation results show that compared with current compressed sensing (CS) methods,the estimation error of our scheme is reduced dramatically in high SNR region while the pilot number is still kept small.
基金supported by the National Science&Technology Major Projects(2012ZX03001031-004)the Fundamental Research Funds for the Central Universities(2012RC0105)
文摘The transmission antennas of cooperative systems are spatially distributed on multiple nodes, so the received signal can be asynchronous due to propagation delays. A receiving scheme for cooperative relay networks is proposed, multiple asynchronous signals are reconstructed at the receiver by forward and backward interference cancellation, which can obtain gains of cooperative transmission diversity with obvious delay and with no requiring timing synchronization or orthogonal channelization between relays. Analysis and simulation show that the bit error rate(BER) of the proposed scheme is similar to Alamouti code, and the scheme has the diversity order of orthogonal transmission scheme accompanied by minimal BER losses. It is demonstrated that the performance can be further improved by adding an error correcting code(ECC).
基金Shanghai STCSM Project (07dz22023)Shanghai Postdoctoral Scientific Program (07R214158)
文摘This article considers a wireless network consisting of multiple sources that communicate with the corresponding destination utilizing a single half-duplex relay, whereas, the sources use the relay opportunistically. By integrating the information theory with the concept of effective capacity, this article proposes a dynamic time allocation strategy over the wireless relay network that aims at maximizing the relay network throughput, subject to a given delay quality of service (QoS) constraint, where time division multiple access (TDMA) is applied in the relay network. The simulation results show that the proposed allocation strategy can significantly improve the effective capacity as compared to the traditional equal time allocation strategy.
基金supported by the National Natural Science Foundation of China(No.61501507)the Jiangsu Provincial Natural Science Foundation of China(No.BK20150719)the China Postdoctoral Science Foundation(No.2017M610066)
文摘In this paper, we investigate physical layer security for simultaneous wireless information and power transfer in amplify-and-forward relay networks. We propose a joint robust cooperative beamforming and artificial noise scheme for secure communication and efficient wireless energy transfer. Specifically, by treating the energy receiver as a potential eavesdropper and assuming that only imperfect channel state information can be obtained, we formulate an optimization problem to maximize the worst-case secrecy rate between the source and the legitimate information receiver under both the power constraint at the relays and the wireless power harvest constraint at the energy receiver. Since such a problem is non-convex and hard to tackle, we propose a two-level optimization approach which involves a one-dimensional search and semidefinite relaxation. Simulation results show that the proposed robust scheme achieves better worst-case secrecy rate performance than other schemes.