BEIJING Institute of Talent Development Strategy and Peking University’s Guanghua School of Management have released the 2024 edition of the Global City Talent Retention Index in cooperation with Nature Research Inte...BEIJING Institute of Talent Development Strategy and Peking University’s Guanghua School of Management have released the 2024 edition of the Global City Talent Retention Index in cooperation with Nature Research Intelligence.展开更多
BACKGROUND Adult distal humeral fractures(DHF)comprise 2%-5%of all fractures and 30%of all elbow fractures.Treatment of DHF may be technically demanding due to fracture complexity and proximity of neurovascular struct...BACKGROUND Adult distal humeral fractures(DHF)comprise 2%-5%of all fractures and 30%of all elbow fractures.Treatment of DHF may be technically demanding due to fracture complexity and proximity of neurovascular structures.Open reduction and internal fixation(ORIF)are often the treatment of choice,but arthroplasty is considered in case of severe comminution or in elderly patients with poor bone quality.Ulnar nerve affection following surgical treatment of distal humerus fractures is a well-recognized complication.AIM To report the risk of ulnar nerve affection after surgery for acute DHFs.METHODS We retrospectively identified 239 consecutive adult patients with acute DHFs who underwent surgery with ORIF,elbow hemiarthroplasty(EHA)or total elbow arthroplasty(TEA)between January 2011 and December 2019.In all cases,the ulnar nerve was released in situ without anterior transposition.We used our institutional database to review patients’medical records for demographics,fracture morphology,type of surgery and ulnar nerve affection immediately;records were reviewed after surgery and at 2 wk and 12 wk of routine clinical outpatient follow-up.Twenty-nine percent patients were excluded due to pre-or postoperative conditions.Final follow-up examination was a telephone interview in which ulnar nerve affection was reported according to the McGowen Classification Score.A total of 210 patients were eligible for interview,but 13 patients declined participation and 17 patients failed to respond.Thus,180 patients were included.RESULTS Mean age at surgery was 64 years(range 18-88 years);121(67.3%)patients were women;59(32.7%)were men.According to the AO/OTA classification system,we recorded 47 patients with type A3,55 patients with type B and 78 patients with type C fractures.According to the McGowen Classification Score,mild ulnar nerve affection was reported in nine patients;severe affection,in two.A total of 69 patients were treated with ORIF of whom three had mild temporary ulnar nerve affection and one had severe ulnar nerve affection.In all,111 patients were treated with arthroplasty(67 EHA,44 TEA)of whom seven had mild ulnar nerve affection and one had severe persistent ulnar nerve affection.No further treatment was provided.CONCLUSION The risk of ulnar nerve affection after surgical treatment for acute DHF is low when the ulnar nerve is released in situ without nerve transposition,independently of the treatment provided.展开更多
On May 26th,the China Cardiovascular Health Index 2023 was grandly released at the opening ceremony of the 17th Oriental Congress of Cardiology.The China Cardiovascular Health Index(CHI)is not only the first medical i...On May 26th,the China Cardiovascular Health Index 2023 was grandly released at the opening ceremony of the 17th Oriental Congress of Cardiology.The China Cardiovascular Health Index(CHI)is not only the first medical index-type indicator reflecting and measuring the status of cardiovascular diseases and treatment in our country,but also the world's first comprehensive index assessment of three-dimensional scanning for cardiovascular disease prevention and control at a national level.It holds a milestone significance for thedevelopmenttof cardiovascular disease prevention and treatment.展开更多
The 5th China International Import Expo(CIIE)was held in Shangha i from November 5th to 10th,2023.In order to enable all the relevant parties at home and abroad to better understand the development of China’s imports...The 5th China International Import Expo(CIIE)was held in Shangha i from November 5th to 10th,2023.In order to enable all the relevant parties at home and abroad to better understand the development of China’s imports,the“Report on Chinese Imports 2023”was published,which analyzes China’s imports from the perspectives of provinces and municipalities,cities,import source countries,industries,direct customs,high-tech industrial development zones,economic and technological development zones and free trade zones in order to comprehensively understand the latest trends and changes in the development of China’s import trade in 2022.展开更多
During the first CISCE,the Global Supply Chain Promotion Report(hereinafter called report)was released.As the flagship report of the expo,the report is the world’s first research report themed around the supply chain...During the first CISCE,the Global Supply Chain Promotion Report(hereinafter called report)was released.As the flagship report of the expo,the report is the world’s first research report themed around the supply chain promotion from the perspective of business community.Over the past 7 months,the CCPIT research institute has conducted a survey covering 526 domestic and overseas enterprises and has also conducted interviews with more than 100 global and domestic experts.The report is finished with about 150,000 letters.展开更多
On February 26, 2024, China Aerospace Science and Technology Corporation(CASC) released the Blue Book of China Aerospace Science and Technology Activities(2023). The Blue Book shows that China carried out 67 launch mi...On February 26, 2024, China Aerospace Science and Technology Corporation(CASC) released the Blue Book of China Aerospace Science and Technology Activities(2023). The Blue Book shows that China carried out 67 launch missions throughout the year in 2023, ranking second in the world. Among them, 47 launches of the Long March series of carrier rockets were all successful, and the cumulative number of launches exceeded 500.展开更多
Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect...Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually....BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.展开更多
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechani...The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.展开更多
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap...Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.展开更多
BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blocka...BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blockade has significantly prolonged overall survival,marking a pivotal advancement comparable to the impact of Herceptin over the past two decades.While the therapeutic benefits of ICIs are evident,the increasing use of immunotherapy has led to an increase in immune-related adverse events.CASE SUMMARY This article presents the case of a patient with advanced gastric cancer and chronic plaque psoriasis.Following sintilimab therapy,the patient developed severe rashes accompanied by cytokine release syndrome(CRS).Fortunately,effective management was achieved through the administration of glucocorticoid,tocilizumab,and acitretin,which resulted in favorable outcomes.CONCLUSION Glucocorticoid and tocilizumab therapy was effective in managing CRS after PD-1 blockade therapy for gastric cancer in a patient with chronic plaque psoriasis.展开更多
Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling mol...Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).展开更多
Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ...Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.展开更多
The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,esp...The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,especially in the Tibetan Plateau(TP),known as the Third Pole and the Asian Water Tower.In particular,the rapid retreat of temperate glaciers in the southeastern TP has led to the formation of expansive glacier forelands.These forelands are not merely evidence of climate shifts but are also key areas for transformative carbon dynamics.Moreover,the newly exposed land surface actively adjusts the balance of dissolved organic carbon,especially in meltwater,and influences the release of greenhouse gases from a range of sources including glacial lakes,subglacial sediments,and supraglacial/proglacial rivers.These processes play a crucial role in the dynamics of atmospheric carbon dioxide.Drawing from our intensive and detailed observations over several years,this perspective not only emphasizes the importance of the underexplored impact of glacier forelands on carbon cycles but also opens a window into understanding potential future trajectories in a warming world.展开更多
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal inte...The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal interoception specifically regulates the metabolic homeostasis of bones.Osteoarthritis(OA)is a complex joint disorder involving cartilage,subchondral bone,and synovium.The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads.Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone,resulting in subchondral bone sclerosis in OA.The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA.In this review,we offer a general overview of interoception,specifically skeletal interoception,subchondral bone microenviroment and the aberrant subchondral remedeling.We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA,as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.展开更多
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan...Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail...The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.展开更多
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the...Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.展开更多
文摘BEIJING Institute of Talent Development Strategy and Peking University’s Guanghua School of Management have released the 2024 edition of the Global City Talent Retention Index in cooperation with Nature Research Intelligence.
文摘BACKGROUND Adult distal humeral fractures(DHF)comprise 2%-5%of all fractures and 30%of all elbow fractures.Treatment of DHF may be technically demanding due to fracture complexity and proximity of neurovascular structures.Open reduction and internal fixation(ORIF)are often the treatment of choice,but arthroplasty is considered in case of severe comminution or in elderly patients with poor bone quality.Ulnar nerve affection following surgical treatment of distal humerus fractures is a well-recognized complication.AIM To report the risk of ulnar nerve affection after surgery for acute DHFs.METHODS We retrospectively identified 239 consecutive adult patients with acute DHFs who underwent surgery with ORIF,elbow hemiarthroplasty(EHA)or total elbow arthroplasty(TEA)between January 2011 and December 2019.In all cases,the ulnar nerve was released in situ without anterior transposition.We used our institutional database to review patients’medical records for demographics,fracture morphology,type of surgery and ulnar nerve affection immediately;records were reviewed after surgery and at 2 wk and 12 wk of routine clinical outpatient follow-up.Twenty-nine percent patients were excluded due to pre-or postoperative conditions.Final follow-up examination was a telephone interview in which ulnar nerve affection was reported according to the McGowen Classification Score.A total of 210 patients were eligible for interview,but 13 patients declined participation and 17 patients failed to respond.Thus,180 patients were included.RESULTS Mean age at surgery was 64 years(range 18-88 years);121(67.3%)patients were women;59(32.7%)were men.According to the AO/OTA classification system,we recorded 47 patients with type A3,55 patients with type B and 78 patients with type C fractures.According to the McGowen Classification Score,mild ulnar nerve affection was reported in nine patients;severe affection,in two.A total of 69 patients were treated with ORIF of whom three had mild temporary ulnar nerve affection and one had severe ulnar nerve affection.In all,111 patients were treated with arthroplasty(67 EHA,44 TEA)of whom seven had mild ulnar nerve affection and one had severe persistent ulnar nerve affection.No further treatment was provided.CONCLUSION The risk of ulnar nerve affection after surgical treatment for acute DHF is low when the ulnar nerve is released in situ without nerve transposition,independently of the treatment provided.
文摘On May 26th,the China Cardiovascular Health Index 2023 was grandly released at the opening ceremony of the 17th Oriental Congress of Cardiology.The China Cardiovascular Health Index(CHI)is not only the first medical index-type indicator reflecting and measuring the status of cardiovascular diseases and treatment in our country,but also the world's first comprehensive index assessment of three-dimensional scanning for cardiovascular disease prevention and control at a national level.It holds a milestone significance for thedevelopmenttof cardiovascular disease prevention and treatment.
文摘The 5th China International Import Expo(CIIE)was held in Shangha i from November 5th to 10th,2023.In order to enable all the relevant parties at home and abroad to better understand the development of China’s imports,the“Report on Chinese Imports 2023”was published,which analyzes China’s imports from the perspectives of provinces and municipalities,cities,import source countries,industries,direct customs,high-tech industrial development zones,economic and technological development zones and free trade zones in order to comprehensively understand the latest trends and changes in the development of China’s import trade in 2022.
文摘During the first CISCE,the Global Supply Chain Promotion Report(hereinafter called report)was released.As the flagship report of the expo,the report is the world’s first research report themed around the supply chain promotion from the perspective of business community.Over the past 7 months,the CCPIT research institute has conducted a survey covering 526 domestic and overseas enterprises and has also conducted interviews with more than 100 global and domestic experts.The report is finished with about 150,000 letters.
文摘On February 26, 2024, China Aerospace Science and Technology Corporation(CASC) released the Blue Book of China Aerospace Science and Technology Activities(2023). The Blue Book shows that China carried out 67 launch missions throughout the year in 2023, ranking second in the world. Among them, 47 launches of the Long March series of carrier rockets were all successful, and the cumulative number of launches exceeded 500.
基金Supported by the Special Fund for Construction of National Tea Industry Technology System(CARS-23)Funding Project of Hubei Agricultural Science and Technology Innovation Center(2011-620-005-003-04)~~
文摘Slow/controlled release fertilizers (SRFs/CRFs) have been paid more at- tentions by the researchersin recent years. In this paper, the application effects and methods, types, current problem and development prospect of SRFs/CRFsboth at home and abroad were reviewed. The production principles and processes of urea- formaldehyde slow release fertilizers were introduced; and It is suggested that the urea-formaldehyde slow release fertilizers show great development to ease energy and environment pressure.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金Supported by Health Commission of Hunan Province,No.202203014389Chinese Medicine Research Project of Hunan Province,No.A2023051the Natural Science Foundation of Hunan Province,No.2024JJ9414.
文摘BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.
基金supported by the National Natural Science Foundation of China,Nos.81870732(to DZ),82171161(to DZ),81900933(to YS),and 82000978(to ZL).
文摘The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2021R1A2C2012808)Technology Innovation Program(Alchemist Project)(No.20012378)funded by the Ministry of Trade,Industry&Energy(MOTIE),South Korea.
文摘Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
基金Supported by Shaoxing Health Science and Technology Program,No.2022SY016,No.2022KY010.
文摘BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blockade has significantly prolonged overall survival,marking a pivotal advancement comparable to the impact of Herceptin over the past two decades.While the therapeutic benefits of ICIs are evident,the increasing use of immunotherapy has led to an increase in immune-related adverse events.CASE SUMMARY This article presents the case of a patient with advanced gastric cancer and chronic plaque psoriasis.Following sintilimab therapy,the patient developed severe rashes accompanied by cytokine release syndrome(CRS).Fortunately,effective management was achieved through the administration of glucocorticoid,tocilizumab,and acitretin,which resulted in favorable outcomes.CONCLUSION Glucocorticoid and tocilizumab therapy was effective in managing CRS after PD-1 blockade therapy for gastric cancer in a patient with chronic plaque psoriasis.
基金supported by an American Australian Association Fellowship(to MVB).
文摘Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).
基金Funded by the Scientific Research Project of Shanghai Municipal Health Commission(No.201940430)。
文摘Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.
基金supported by the National Natural Science Foundation of China(42322105,42271132)Outstanding Youth Fund of Gansu Province(23JRRA612).
文摘The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,especially in the Tibetan Plateau(TP),known as the Third Pole and the Asian Water Tower.In particular,the rapid retreat of temperate glaciers in the southeastern TP has led to the formation of expansive glacier forelands.These forelands are not merely evidence of climate shifts but are also key areas for transformative carbon dynamics.Moreover,the newly exposed land surface actively adjusts the balance of dissolved organic carbon,especially in meltwater,and influences the release of greenhouse gases from a range of sources including glacial lakes,subglacial sediments,and supraglacial/proglacial rivers.These processes play a crucial role in the dynamics of atmospheric carbon dioxide.Drawing from our intensive and detailed observations over several years,this perspective not only emphasizes the importance of the underexplored impact of glacier forelands on carbon cycles but also opens a window into understanding potential future trajectories in a warming world.
基金supported by the National Natural Science Foundation of China(82072432).
文摘The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal interoception specifically regulates the metabolic homeostasis of bones.Osteoarthritis(OA)is a complex joint disorder involving cartilage,subchondral bone,and synovium.The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads.Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone,resulting in subchondral bone sclerosis in OA.The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA.In this review,we offer a general overview of interoception,specifically skeletal interoception,subchondral bone microenviroment and the aberrant subchondral remedeling.We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA,as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
基金a grant from the state of Schleswig-Holstein and the European Union ERDF-European Regional Development Fund(Zukunftsprogramm Wirtschaft)。
文摘Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金supported by the High-Level Talent Training Program in Guizhou Province(GCC[2023]045)the Guizhou Talent Base Project[RCJD2018-21]。
文摘The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.
基金Funded by the National Natural Science Foundation of China(No.52104363)。
文摘Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.