In order to develop biological control of aphids by a "push-pull" approach, intercropping using repellent emitting plants was developed in different crop and associated plant models. Garlic is one of the potential p...In order to develop biological control of aphids by a "push-pull" approach, intercropping using repellent emitting plants was developed in different crop and associated plant models. Garlic is one of the potential plant that could be inserted in crops to decrease the pest occurrence in neighboring crop plots. In this study, field works were conducted in wheat fields in Langfang Experimental Station, Hebei Province in China from October 2009 to July 2010 during wheat developmental season. The effect of wheat intercropping with garlic but also the volatiles emission on the incidence of the English grain aphid, Sitobion avenae Fabricius (Homoptera: Aphididae) was assessed. Natural beneficial occurrence and global yields in two winter wheat varieties that were susceptible or resistant to cereal aphid were also determined comparing to control plots without the use of garlic plant intercrop nor semiochemical releaser in the fields. S. avenae was found to be lower in garlic oil blend treatment (GOB), diallyl disulfide treatment (DD) and wheat-garlic intercropping treatment (WGI) when compared to the control plots for both two varieties (P〈0.01). Both intercropping and application of volatile chemicals emitted by garlic could improve the population densities of natural enemies of cereal aphid, including ladybeetles and mummified aphids. Ladybeetle population density in WGI, GOB and mummified aphids densities in WGI, DD were significantly higher than those in control fields for both two varieties (P〈0.05). There were significant interactions between cultivars and treatments to the population densities of S. avenae. The 1 000-grain weight and yield of wheat were also increased compared to the control. Due to their potential alternatives as a biological control agent against cereal aphid, garlic intercropping and related emitted volatiles are expected to contribute to the further improvement of integrated pest management systems and to potentially reduce the amount of traditional synthetic pesticides applied in wheat fields.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually....BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.展开更多
The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechani...The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.展开更多
Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherap...Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.展开更多
BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blocka...BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blockade has significantly prolonged overall survival,marking a pivotal advancement comparable to the impact of Herceptin over the past two decades.While the therapeutic benefits of ICIs are evident,the increasing use of immunotherapy has led to an increase in immune-related adverse events.CASE SUMMARY This article presents the case of a patient with advanced gastric cancer and chronic plaque psoriasis.Following sintilimab therapy,the patient developed severe rashes accompanied by cytokine release syndrome(CRS).Fortunately,effective management was achieved through the administration of glucocorticoid,tocilizumab,and acitretin,which resulted in favorable outcomes.CONCLUSION Glucocorticoid and tocilizumab therapy was effective in managing CRS after PD-1 blockade therapy for gastric cancer in a patient with chronic plaque psoriasis.展开更多
Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling mol...Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).展开更多
Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ...Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.展开更多
The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,esp...The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,especially in the Tibetan Plateau(TP),known as the Third Pole and the Asian Water Tower.In particular,the rapid retreat of temperate glaciers in the southeastern TP has led to the formation of expansive glacier forelands.These forelands are not merely evidence of climate shifts but are also key areas for transformative carbon dynamics.Moreover,the newly exposed land surface actively adjusts the balance of dissolved organic carbon,especially in meltwater,and influences the release of greenhouse gases from a range of sources including glacial lakes,subglacial sediments,and supraglacial/proglacial rivers.These processes play a crucial role in the dynamics of atmospheric carbon dioxide.Drawing from our intensive and detailed observations over several years,this perspective not only emphasizes the importance of the underexplored impact of glacier forelands on carbon cycles but also opens a window into understanding potential future trajectories in a warming world.展开更多
The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal inte...The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal interoception specifically regulates the metabolic homeostasis of bones.Osteoarthritis(OA)is a complex joint disorder involving cartilage,subchondral bone,and synovium.The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads.Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone,resulting in subchondral bone sclerosis in OA.The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA.In this review,we offer a general overview of interoception,specifically skeletal interoception,subchondral bone microenviroment and the aberrant subchondral remedeling.We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA,as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.展开更多
Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implan...Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.展开更多
Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations th...Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.展开更多
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail...The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.展开更多
An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design ...An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.展开更多
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the...Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced in...Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.展开更多
Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes of...Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.展开更多
Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows sig...Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives.展开更多
基金supported by grants from the Cooperation Project between Belgium and China (CUD\PIC Shandong, 2010DFA32810)
文摘In order to develop biological control of aphids by a "push-pull" approach, intercropping using repellent emitting plants was developed in different crop and associated plant models. Garlic is one of the potential plant that could be inserted in crops to decrease the pest occurrence in neighboring crop plots. In this study, field works were conducted in wheat fields in Langfang Experimental Station, Hebei Province in China from October 2009 to July 2010 during wheat developmental season. The effect of wheat intercropping with garlic but also the volatiles emission on the incidence of the English grain aphid, Sitobion avenae Fabricius (Homoptera: Aphididae) was assessed. Natural beneficial occurrence and global yields in two winter wheat varieties that were susceptible or resistant to cereal aphid were also determined comparing to control plots without the use of garlic plant intercrop nor semiochemical releaser in the fields. S. avenae was found to be lower in garlic oil blend treatment (GOB), diallyl disulfide treatment (DD) and wheat-garlic intercropping treatment (WGI) when compared to the control plots for both two varieties (P〈0.01). Both intercropping and application of volatile chemicals emitted by garlic could improve the population densities of natural enemies of cereal aphid, including ladybeetles and mummified aphids. Ladybeetle population density in WGI, GOB and mummified aphids densities in WGI, DD were significantly higher than those in control fields for both two varieties (P〈0.05). There were significant interactions between cultivars and treatments to the population densities of S. avenae. The 1 000-grain weight and yield of wheat were also increased compared to the control. Due to their potential alternatives as a biological control agent against cereal aphid, garlic intercropping and related emitted volatiles are expected to contribute to the further improvement of integrated pest management systems and to potentially reduce the amount of traditional synthetic pesticides applied in wheat fields.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金Supported by Health Commission of Hunan Province,No.202203014389Chinese Medicine Research Project of Hunan Province,No.A2023051the Natural Science Foundation of Hunan Province,No.2024JJ9414.
文摘BACKGROUND With the development of percutaneous coronary intervention(PCI),the number of interventional procedures without implantation,such as bioresorbable stents(BRS)and drug-coated balloons,has increased annually.Metal drug-eluting stent unloading is one of the most common clinical complications.Comparatively,BRS detachment is more concealed and harmful,but has yet to be reported in clinical research.In this study,we report a case of BRS unloading and successful rescue.This is a case of a 59-year-old male with the following medical history:“Type 2 diabetes mellitus”for 2 years,maintained with metformin extended-release tablets,1 g PO BID;“hypertension”for 20 years,with long-term use of metoprolol sustained-release tablets,47.5 mg PO QD;“hyperlipidemia”for 20 years,without regular medication.He was admitted to the emergency department of our hospital due to intermittent chest pain lasting 18 hours,on February 20,2022 at 15:35.Electrocardiogram results showed sinus rhythm,ST-segment elevation in leads I and avL,and poor R-wave progression in leads V1–3.High-sensitivity troponin I level was 4.59 ng/mL,indicating an acute high lateral wall myocardial infarction.The patient’s family requested treatment with BRS,without implanta-tion.During PCI,the BRS became unloaded but was successfully rescued.The patient was followed up for 2 years;he had no episodes of angina pectoris and was in generally good condition.CONCLUSION We describe a case of a 59-year-old male experienced BRS unloading and successful rescue.By analyzing images,the causes of BRS unloading and the treatment plan are discussed to provide insights for BRS release operations.We discuss preventive measures for BRS unloading.
基金supported by the National Natural Science Foundation of China,Nos.81870732(to DZ),82171161(to DZ),81900933(to YS),and 82000978(to ZL).
文摘The spontaneous bursts of electrical activity in the developing auditory system are derived from the periodic release of adenosine triphosphate(ATP)by supporting cells in the Kölliker’s organ.However,the mechanisms responsible for initiating spontaneous ATP release have not been determined.Our previous study revealed that telomerase reverse transcriptase(TERT)is expressed in the basilar membrane during the first postnatal week.Its role in cochlear development remains unclear.In this study,we investigated the expression and role of TERT in postnatal cochlea supporting cells.Our results revealed that in postnatal cochlear Kölliker’s organ supporting cells,TERT shifts from the nucleus into the cytoplasm over time.We found that the TERT translocation tendency in postnatal cochlear supporting cells in vitro coincided with that observed in vivo.Further analysis showed that TERT in the cytoplasm was mainly located in mitochondria in the absence of oxidative stress or apoptosis,suggesting that TERT in mitochondria plays roles other than antioxidant or anti-apoptotic functions.We observed increased ATP synthesis,release and activation of purine signaling systems in supporting cells during the first 10 postnatal days.The phenomenon that TERT translocation coincided with changes in ATP synthesis,release and activation of the purine signaling system in postnatal cochlear supporting cells suggested that TERT may be involved in regulating ATP release and activation of the purine signaling system.Our study provides a new research direction for exploring the spontaneous electrical activity of the cochlea during the early postnatal period.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2021R1A2C2012808)Technology Innovation Program(Alchemist Project)(No.20012378)funded by the Ministry of Trade,Industry&Energy(MOTIE),South Korea.
文摘Dose-dense chemotherapy is the preferred first-line therapy for triple-negative breast cancer(TNBC),a highly aggressive disease with a poor prognosis.This treatment uses the same drug doses as conventional chemotherapy but with shorter dosing intervals,allowing for promising clinical outcomes with intensive treatment.However,the frequent systemic administration used for this treatment results in systemic toxicity and low patient compliance,limiting therapeutic efficacy and clinical benefit.Here,we report local dose-dense chemotherapy to treat TNBC by implanting 3D printed devices with timeprogrammed pulsatile release profiles.The implantable device can control the time between drug releases based on its internal microstructure design,which can be used to control dose density.The device is made of biodegradable materials for clinical convenience and designed for minimally invasive implantation via a trocar.Dose density variation of local chemotherapy using programmable release enhances anti-cancer effects in vitro and in vivo.Under the same dose density conditions,device-based chemotherapy shows a higher anticancer effect and less toxic response than intratumoral injection.We demonstrate local chemotherapy utilizing the implantable device that simulates the drug dose,number of releases,and treatment duration of the dose-dense AC(doxorubicin and cyclophosphamide)regimen preferred for TNBC treatment.Dose density modulation inhibits tumor growth,metastasis,and the expression of drug resistance-related proteins,including p-glycoprotein and breast cancer resistance protein.To the best of our knowledge,local dose-dense chemotherapy has not been reported,and our strategy can be expected to be utilized as a novel alternative to conventional therapies and improve anti-cancer efficiency.
基金Supported by Shaoxing Health Science and Technology Program,No.2022SY016,No.2022KY010.
文摘BACKGROUND In recent years,immune checkpoint inhibitors(ICIs)have demonstrated remarkable efficacy across diverse malignancies.Notably,in patients with advanced gastric cancer,the use of programmed death 1(PD-1)blockade has significantly prolonged overall survival,marking a pivotal advancement comparable to the impact of Herceptin over the past two decades.While the therapeutic benefits of ICIs are evident,the increasing use of immunotherapy has led to an increase in immune-related adverse events.CASE SUMMARY This article presents the case of a patient with advanced gastric cancer and chronic plaque psoriasis.Following sintilimab therapy,the patient developed severe rashes accompanied by cytokine release syndrome(CRS).Fortunately,effective management was achieved through the administration of glucocorticoid,tocilizumab,and acitretin,which resulted in favorable outcomes.CONCLUSION Glucocorticoid and tocilizumab therapy was effective in managing CRS after PD-1 blockade therapy for gastric cancer in a patient with chronic plaque psoriasis.
基金supported by an American Australian Association Fellowship(to MVB).
文摘Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).
基金Funded by the Scientific Research Project of Shanghai Municipal Health Commission(No.201940430)。
文摘Our previous studies have successfully grafted biotin and galactose onto chitosan(CS)and synthesized biotin modified galactosylated chitosan(Bio-GC).The optimum N/P ratio of Bio-GC and plasmid DNA was 3:1.At this N/P ratio,the transfection efficiency in the hepatoma cells was the highest with a slow release effect.Bio-GC nanomaterials exhibit the protective effect of preventing the gene from nuclease degradation,and can target the transfection into hepatoma cells by combination with galactose and biotin receptors.The transfection rate was inhibited by the competition of galactose and biotin.Bio-GC nanomaterials were imported into cells’cytoplasm by their receptors,followed by the imported exogenous gene transfected into the cells.Bio-GC nanomaterials can also cause inhibitory activity in the hepatoma cells in the model of orthotopic liver transplantation in mice,by carrying the gene through the blood to the hepatoma tissue.Taken together,bio-GC nanomaterials act as gene vectors with the activity of protecting the gene from DNase degradation,improving the rate of transfection in hepatoma cells,and transporting the gene into the cytoplasm in vitro and in vivo.Therefore,they are efficient hepatoma-targeting gene carriers.
基金supported by the National Natural Science Foundation of China(42322105,42271132)Outstanding Youth Fund of Gansu Province(23JRRA612).
文摘The critical challenge of ongoing climate warming is resulting in glacier melting globally,a process accompanied by the formation of substantial glacier forelands.This phenomenon emerges as a pivotal area of study,especially in the Tibetan Plateau(TP),known as the Third Pole and the Asian Water Tower.In particular,the rapid retreat of temperate glaciers in the southeastern TP has led to the formation of expansive glacier forelands.These forelands are not merely evidence of climate shifts but are also key areas for transformative carbon dynamics.Moreover,the newly exposed land surface actively adjusts the balance of dissolved organic carbon,especially in meltwater,and influences the release of greenhouse gases from a range of sources including glacial lakes,subglacial sediments,and supraglacial/proglacial rivers.These processes play a crucial role in the dynamics of atmospheric carbon dioxide.Drawing from our intensive and detailed observations over several years,this perspective not only emphasizes the importance of the underexplored impact of glacier forelands on carbon cycles but also opens a window into understanding potential future trajectories in a warming world.
基金supported by the National Natural Science Foundation of China(82072432).
文摘The interoception maintains proper physiological conditions and metabolic homeostasis by releasing regulatory signals after perceving changes in the internal state of the organism.Among its various forms,skeletal interoception specifically regulates the metabolic homeostasis of bones.Osteoarthritis(OA)is a complex joint disorder involving cartilage,subchondral bone,and synovium.The subchondral bone undergoes continuous remodeling to adapt to dynamic joint loads.Recent findings highlight that skeletal interoception mediated by aberrant mechanical loads contributes to pathological remodeling of the subchondral bone,resulting in subchondral bone sclerosis in OA.The skeletal interoception is also a potential mechanism for chronic synovial inflammation in OA.In this review,we offer a general overview of interoception,specifically skeletal interoception,subchondral bone microenviroment and the aberrant subchondral remedeling.We also discuss the role of skeletal interoception in abnormal subchondral bone remodeling and synovial inflammation in OA,as well as the potential prospects and challenges in exploring novel OA therapies that target skeletal interoception.
基金a grant from the state of Schleswig-Holstein and the European Union ERDF-European Regional Development Fund(Zukunftsprogramm Wirtschaft)。
文摘Historically,the rapid degradation and massive gas release from magnesium(Mg)implants resulted in severe emphysema and mechanical failure.With the advent of new alloys and surface treatment methods,optimized Mg implants have re-entered clinics since last decade with reliable performance.However,the optimization aims at slowing down the degradation process,rather than exemption of the gas release.This study involved a systematic evaluation of current preclinical and clinical evidence,regarding the physical signs,symptoms,radiological features,pathological findings and complications potentially associated with peri±implant gas accumulation(PIGA)after musculoskeletal Mg implantation.The literature search identified 196 potentially relevant publications,and 51 papers were enrolled for further analysis,including 22 preclinical tests and 29 clinical studies published from 2005 to 2023.Various Mg-based materials have been evaluated in animal research,and the application of pure Mg and Mg alloys have been reported in clinical follow-ups involving multiple anatomical sites and musculoskeletal disorders.Soft tissue and intraosseous PIGA are common in both animal tests and clinical follow-ups,and potentially associated with certain adverse events.Radiological examinations especially micro-CT and clinical CT scans provide valuable information for quantitative and longitudinal analysis.While according to simulation tests involving Mg implantation and chemical processing,tissue fixation could lead to an increase in the volume of gas cavity,thus the results obtained from ex vivo imaging or histopathological evaluations should be interpreted with caution.There still lacks standardized procedures or consensus for both preclinical and clinical evaluation of PIGA.However,by providing focused insights into the topic,this evidence-based study will facilitate future animal tests and clinical evaluations,and support developing biocompatible Mg implants for the treatment of musculoskeletal disorders.
基金supported by the National Natural Science Foundation of China(52073145 and 82004081)the Jiangsu Talent Professor Program,Jiangsu Innovation Project of Graduate Student(KYCX23-2192)+1 种基金the National Natural Science Foundation of Nanjing University of Chinese Medicine(NZY82004081)the Special Grants of China Postdoctoral Science Foundation(2021T140792).
文摘Multiple myeloma(MM)is the second most prevalent hematological malignancy.Current MM treatment strategies are hampered by systemic toxicity and suboptimal therapeutic efficacy.This study addressed these limitations through the development of a potent MM-targeting chemotherapy strategy,which capitalized on the high binding affinity of alendronate for hydroxyapatite in the bone matrix and the homologous targeting of myeloma cell membranes,termed T-PB@M.The results from our investigations highlight the considerable bone affinity of T-PB@M,both in vitro and in vivo.Additionally,this material demonstrated a capability for drug release triggered by low pH conditions.Moreover,T-PB@M induced the generation of reactive oxygen species and triggered cell apoptosis through the poly(ADP-ribose)polymerase 1(PARP1)-Caspase-3-B-cell lymphoma-2(Bcl-2)pathway in MM cells.Notably,T-PB@M preferentially targeted bone-involved sites,thereby circumventing systemic toxic side effects and leading to prolonged survival of MM orthotopic mice.Therefore,this designed target-MM nanocarrier presents a promising and potentially effective platform for the precise treatment of MM.
基金supported by the High-Level Talent Training Program in Guizhou Province(GCC[2023]045)the Guizhou Talent Base Project[RCJD2018-21]。
文摘The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies.
基金supported by the Project for Scientific Research of West Anhui University(No.00701092282)。
文摘An effective breeding blanket is critical to support tritium self-sufficiency for future fusion reactors.The difficulty is to achieve tritium breeding ratio(TBR)target of 1.05 or more.This paper presents a new design approach to the blanket design process.It indicates that fusion blanket design is affected by universal functions based on iterations.Three aspects are worth more attention from fusion engineers in the future.The first factor is that the iterations on the material fractions affect not only structure scheme but also TBR variation.The second factor is the cooling condition affecting final TBR due to the change of the structure material proportion.The third factor is temperature field related to the tritium release.In particular,it is suggested that the statistical calculation of effective TBR must be under reasonable control of the blanket temperature field.This approach is novel for blanket engineering in development of a fusion reactor.
基金Funded by the National Natural Science Foundation of China(No.52104363)。
文摘Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
文摘Boron is an ambitious fuel in energetic materials since its high heat release values,but its application is prohibited by low combustion efficiency and oxidization during storage.The polydopamine(PDA)was introduced into boron particles,investigating the impact of PDA content on the energetic behavior of boron.The results indicated that the PDA coating formed a fishing net structure on the surface of boron particles.The heat release results showed that the combustion calorific value of B@PDA was higher than that of the raw boron.Specifically,the actual combustion heat of boron powder in B@10%PDA increased by 38.08%.Meanwhile,the DSC peak temperature decreased by 100.65℃under similar oxidation rate compared to raw boron.Simultaneously,the B@PDA@AP and B@AP composites were prepared,and their combustion properties were evaluated.It was demonstrated that B@10%PDA@AP exhibited superior performance in terms of peak pressure and burning time,respectively.The peak pressure is 12.43 kPa more than B@AP and burning time is 2.22 times higher than B@AP.Therefore,the coating of PDA effectively inhibits the oxidization of boron during storage and enhances the energetic behavior of boron and corresponding composites.
基金National Natural Science Foundation of China (22179008, 21875022)Yibin ‘Jie Bang Gua Shuai’ (2022JB004)+3 种基金support from the Beijing Nova Program (20230484241)support from the Postdoctoral Fellowship Program of CPSF (GZB20230931)Special Support of the Chongqing Postdoctoral Research Project (2023CQBSHTB2041)Initial Energy Science & Technology Co., Ltd (IEST)。
文摘Lithium-rich manganese-based oxides(LRMOs) exhibit high theoretical energy densities, making them a prominent class of cathode materials for lithium-ion batteries. However, the performance of these layered cathodes often declines because of capacity fading during cycling. This decline is primarily attributed to anisotropic lattice strain and oxygen release from cathode surfaces. Given notable structural transformations, complex redox reactions, and detrimental interface side reactions in LRMOs, the development of a single modification approach that addresses bulk and surface issues is challenging. Therefore,this study introduces a surface double-coupling engineering strategy that mitigates bulk strain and reduces surface side reactions. The internal spinel-like phase coating layer, featuring threedimensional(3D) lithium-ion diffusion channels, effectively blocks oxygen release from the cathode surface and mitigates lattice strain. In addition, the external Li_(3)PO_(4) coating layer, noted for its superior corrosion resistance, enhances the interfacial lithium transport and inhibits the dissolution of surface transition metals. Notably, the spinel phase, as excellent interlayer, securely anchors Li_(3)PO_(4) to the bulk lattice and suppresses oxygen release from lattices. Consequently, these modifications considerably boost structural stability and durability, achieving an impressive capacity retention of 83.4% and a minimal voltage decay of 1.49 m V per cycle after 150 cycles at 1 C. These findings provide crucial mechanistic insights into the role of surface modifications and guide the development of high-capacity cathodes with enhanced cyclability.
基金supported by the National Natural Science Foundation of China(Grant No.11832006)。
文摘Afterburning behind the detonation front of an aluminized explosive releases energy on the millisecond timescale,which prolong the release of detonation energy and the energy release at different stages also shows significant differences.However,at present,there are few effective methods for evaluating the energy release characteristics of the middle reaction stage of such explosives,which can have a duration of tens to hundreds of microseconds.The present work demonstrates an approach to assessing the midstage of an aluminized explosive detonation based on a water push test employing a high degree of confinement.In this method,the explosive is contained in a steel cylinder having one end closed that is installed at the bottom of a transparent water tank.Upon detonation,the gaseous products expand in one direction while forcing water ahead of them.The resulting underwater shock wave and the interface between the gas phase products and the water are tracked using an ultra-high-speed framing and streak camera.The shock wave velocity in water and the expansion work performed by the gaseous detonation products were calculated to assess the energy release characteristics of aluminized explosives such as CL-20 and RDX in the middle stage of the detonation reaction.During the middle stage of the detonation process of these aluminized explosives,the aluminum reaction reduced the attenuation of shock waves and increased the work performed by gas phase products.A higher aluminum content increased the energy output while the presence of oxidants slowed the energy release rate.This work demonstrates an effective means of evaluating the performance of aluminized explosives.