In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and cre...In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.展开更多
Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring system...Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.展开更多
In this article,structural probabilistic and non-probabilistic reliability have been evaluated and compared under big data condition.Firstly,the big data is collected via structural monitoring and analysis.Big data is...In this article,structural probabilistic and non-probabilistic reliability have been evaluated and compared under big data condition.Firstly,the big data is collected via structural monitoring and analysis.Big data is classified into different types according to the regularities of the distribution of data.The different stresses which have been subjected by the structure are used in this paper.Secondly,the structural interval reliability and probabilistic pre-diction models are established by using the stress-strength interference theory under big data of random loads after the stresses and structural strength are comprehensively considered.Structural reliability is computed by using various stress types,and the minimum reliability is determined as structural reliability.Finally,the advan-tage and disadvantage of the interval reliability method and probability reliability method are shown by using three examples.It has been shown that the proposed methods are feasible and effective.展开更多
The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,t...The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.展开更多
Earlier research works on fire risk evaluation indicated that an objective,reliable,comprehensive,and practical fire risk evaluation model is essential for mitigating fire occurrence in building construction sites.Nev...Earlier research works on fire risk evaluation indicated that an objective,reliable,comprehensive,and practical fire risk evaluation model is essential for mitigating fire occurrence in building construction sites.Nevertheless,real empirical studies in this research area are quite limited.This journal paper gives an account of the second stage of a research study aiming at developing a fuzzy fire risk evaluation model for building construction sites in Hong Kong.The empirical research findings showed that the overall fire risk level of building construction sites is 3.6427,which can be interpreted as“moderate risk”.Also,the survey respondents perceived that“Restrictions for On-Site Personnel”is the most vital fire risk factor;with“Storage of Flammable Liquids or Dangerous Goods”being the second;and“Attitude of Main Contractor”the third.The proposed fuzzy fire risk evaluation model for building construction sites can be used to assess the overall fire risk level for a building construction site,and to identify improvement areas needed.Although the fuzzy fire risk evaluation model was developed domestically in Hong Kong,the research could be reproduced in other nations to develop similar models for international comparisons.Such an extension would provide a deeper understanding of the fire risk management on building construction sites.展开更多
The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a ne...The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a new interval design point method for the reliability of structural systems in which the distribution parameters of random variables are described as interval variables.The proposed method may provide exact probabilistic interval reliability of structures whose random variables can have either a normal or abnormal distribution form.At last,we show the feasibility of the proposed approach through a typical example.展开更多
For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtaine...For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.展开更多
基金the National Outstanding Youth Science Foundation of China (10425208)Civil 863 Program (2006AA04Z410)111 Project (B07009)
文摘In engineering applications, probabilistic reliability theory appears to be presently the most important method, however, in many cases precise probabilistic reliability theory cannot be considered as adequate and credible model of the real state of actual affairs. In this paper, we developed a hybrid of probabilistic and non-probabilistic reliability theory, which describes the structural uncertain parameters as interval variables when statistical data are found insufficient. By using the interval analysis, a new method for calculating the interval of the structural reliability as well as the reliability index is introduced in this paper, and the traditional probabilistic theory is incorporated with the interval analysis. Moreover, the new method preserves the useful part of the traditional probabilistic reliability theory, but removes the restriction of its strict requirement on data acquisition. Example is presented to demonstrate the feasibility and validity of the proposed theory.
基金This project is supported by National Natural Science Foundation of China(No.50335020,No.50205009)Laboratory of Intelligence Manufacturing Technology of Ministry of Education of China(No.J100301).
文摘Taking into account the whole system structure and the component reliability estimation uncertainty, a system reliability estimation method based on probability and statistical theory for distributed monitoring systems is presented. The variance and confidence intervals of the system reliability estimation are obtained by expressing system reliability as a linear sum of products of higher order moments of component reliability estimates when the number of component or system survivals obeys binomial distribution. The eigenfunction of binomial distribution is used to determine the moments of component reliability estimates, and a symbolic matrix which can facilitate the search of explicit system reliability estimates is proposed. Furthermore, a case of application is used to illustrate the procedure, and with the help of this example, various issues such as the applicability of this estimation model, and measures to improve system reliability of monitoring systems are discussed.
基金The work described in this paper was supported in part by the Foundation from the Science Foundation,Guizhou,China(Qian Kehe[2018]1055)Research Foundation for Talented Scholars in Ningxia Normal University.
文摘In this article,structural probabilistic and non-probabilistic reliability have been evaluated and compared under big data condition.Firstly,the big data is collected via structural monitoring and analysis.Big data is classified into different types according to the regularities of the distribution of data.The different stresses which have been subjected by the structure are used in this paper.Secondly,the structural interval reliability and probabilistic pre-diction models are established by using the stress-strength interference theory under big data of random loads after the stresses and structural strength are comprehensively considered.Structural reliability is computed by using various stress types,and the minimum reliability is determined as structural reliability.Finally,the advan-tage and disadvantage of the interval reliability method and probability reliability method are shown by using three examples.It has been shown that the proposed methods are feasible and effective.
基金the National Natural Science Foundation of China (51408444, 51708428)
文摘The aim of this paper is to propose a theoretical approach for performing the nonprobabilistic reliability analysis of structure.Due to a great deal of uncertainties and limited measured data in engineering practice,the structural uncertain parameters were described as interval variables.The theoretical analysis model was developed by starting from the 2-D plane and 3-D space.In order to avoid the loss of probable failure points,the 2-D plane and 3-D space were respectively divided into two parts and three parts for further analysis.The study pointed out that the probable failure points only existed among extreme points and root points of the limit state function.Furthermore,the low-dimensional analytical scheme was extended to the high-dimensional case.Using the proposed approach,it is easy to find the most probable failure point and to acquire the reliability index through simple comparison directly.A number of equations used for calculating the extreme points and root points were also evaluated.This result was useful to avoid the loss of probable failure points and meaningful for optimizing searches in the research field.Finally,two kinds of examples were presented and compared with the existing computation.The good agreements show that the proposed theoretical analysis approach in the paper is correct.The efforts were conducted to improve the optimization method,to indicate the search direction and path,and to avoid only searching the local optimal solution which would result in missed probable failure points.
文摘Earlier research works on fire risk evaluation indicated that an objective,reliable,comprehensive,and practical fire risk evaluation model is essential for mitigating fire occurrence in building construction sites.Nevertheless,real empirical studies in this research area are quite limited.This journal paper gives an account of the second stage of a research study aiming at developing a fuzzy fire risk evaluation model for building construction sites in Hong Kong.The empirical research findings showed that the overall fire risk level of building construction sites is 3.6427,which can be interpreted as“moderate risk”.Also,the survey respondents perceived that“Restrictions for On-Site Personnel”is the most vital fire risk factor;with“Storage of Flammable Liquids or Dangerous Goods”being the second;and“Attitude of Main Contractor”the third.The proposed fuzzy fire risk evaluation model for building construction sites can be used to assess the overall fire risk level for a building construction site,and to identify improvement areas needed.Although the fuzzy fire risk evaluation model was developed domestically in Hong Kong,the research could be reproduced in other nations to develop similar models for international comparisons.Such an extension would provide a deeper understanding of the fire risk management on building construction sites.
基金supported by the Postdoctoral Science Foundation of China(Grant No.2013M531239)
文摘The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a new interval design point method for the reliability of structural systems in which the distribution parameters of random variables are described as interval variables.The proposed method may provide exact probabilistic interval reliability of structures whose random variables can have either a normal or abnormal distribution form.At last,we show the feasibility of the proposed approach through a typical example.
基金supported by Aeronautical Science Foundation of China (No. 20100251006)Technological Foundation Project of China (No. J132012C001)
文摘For random vibration of airborne platform, the accurate evaluation is a key indicator to ensure normal operation of airborne equipment in flight. However, only limited power spectral density(PSD) data can be obtained at the stage of flight test. Thus, those conventional evaluation methods cannot be employed when the distribution characteristics and priori information are unknown. In this paper, the fuzzy norm method(FNM) is proposed which combines the advantages of fuzzy theory and norm theory. The proposed method can deeply dig system information from limited data, which probability distribution is not taken into account. Firstly, the FNM is employed to evaluate variable interval and expanded uncertainty from limited PSD data, and the performance of FNM is demonstrated by confidence level, reliability and computing accuracy of expanded uncertainty. In addition, the optimal fuzzy parameters are discussed to meet the requirements of aviation standards and metrological practice. Finally, computer simulation is used to prove the adaptability of FNM. Compared with statistical methods, FNM has superiority for evaluating expanded uncertainty from limited data. The results show that the reliability of calculation and evaluation is superior to 95%.