A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packagin...A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85℃/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing.展开更多
Constant stress accelerated life tests(ALTs) can be applied to obtain a high estimation accuracy of reliability measure?ments, but these are time?consuming tests. Progressive stress ALTs can yield failures more quickl...Constant stress accelerated life tests(ALTs) can be applied to obtain a high estimation accuracy of reliability measure?ments, but these are time?consuming tests. Progressive stress ALTs can yield failures more quickly but cannot guaran tee the estimation accuracy of reliability measurements. In this paper, a progressive?constant combination stress ALT is proposed to combine the merits of both tests. The optimal plan, in which the design variables are the initial pro?gressive stress level, the progressive stress ramp rate, the sample allocation proportion of the progressive stress and the constant stress level, is determined using the principle of minimizing the asymptotic variance of the maximum likelihood estimator of the natural log reliable life for the connectors. A comparison between the optimal PCCSALT plan and the CSALT plan with the same sample size and estimation accuracy shows that the test time is reduced by 13.59% by applying the PCCSALT.展开更多
As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance ov...As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.展开更多
Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age...Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.展开更多
Based on the theoretical inference and experiment verification,a method was proposed to carry out the accelerated reliability qualification testing. First,theoretical inference was used to get the acceleration coeffic...Based on the theoretical inference and experiment verification,a method was proposed to carry out the accelerated reliability qualification testing. First,theoretical inference was used to get the acceleration coefficients of super Gauss vibration stress and temperature stress. Then, by applying these coefficients, an accelerated reliability qualification testing curve was obtained from the standard tests. Finally,the actual experiment on a digital marine control device was carried out under the proposed testing method.The experiment result shows that the proposed method can reduce the total experiment time and improve the efficiency of the reliability qualification test.展开更多
In order to achieve quick and accurate lifetime prediction of LED lighting products under the testing time of 2 000 h, a method of online testing of luminous flux is proposed under the condition of temperature stress....In order to achieve quick and accurate lifetime prediction of LED lighting products under the testing time of 2 000 h, a method of online testing of luminous flux is proposed under the condition of temperature stress.Exponential fitting of lumen maintenance, the Bayesian estimation of failure probability, the Weibull distribution of lifetime and the Arrhenius model of the decay rate are used in combination to acquire the distribution of failure probability over time at the ambient temperatures of 25 ℃. The lifetime test of the same lamps based on the Energy Star standard under the testing time of 6 000 h is also implemented to verify the effectiveness of the method. The errors of lifetimes acquired with the proposed method are 7%, 4%, 3% and 1% at the failure probabilities of 62. 3%, 10%, 5% and 1%,respectively.展开更多
This article introduces the current situation of the smart then describes the relationship of meter reliability characteristics meter's reliability and the failure mechanisms at first, and combined with its Bathtub C...This article introduces the current situation of the smart then describes the relationship of meter reliability characteristics meter's reliability and the failure mechanisms at first, and combined with its Bathtub Curve. It also introduces both the feasible failure tree model for meter lifecycle prediction based on actual experiences and meter reliability prediction methodology by SN 29500 norms based on this model. This article also brings forward that it is necessary that the "Learning Factor" shall be adopted in meter reliability prediction for new materials, new process, and customized parts by referring to GJB/Z299C. Thereafter, this article also tries to apply IEC 62059 and JB/T 50070 to introduce the feasible method for the lifecycle prediction result verification by accelerated lifecycle test. Furthermore, the article also explores ways to increase the firmware reliability in smart meter.展开更多
In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of prod...In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of product is adopted. Conducting a constant-stress accelerated degradation test(CSADT) is generally very costly as it requires a large sample size and long time for test. To overcome this problem, it is necessary to carry out research on modeling and statistical analysis methods of step-stress accelerated degradation test (SSADT). Taking electrical connectors as the object, a research is conducted on statistical model and assessment method for SSADT. On the basis of mixed-effect degradation path model, the statistical model of SSADT for electrical connectors is presented, the maximum likelihood method for SSADT data based on mixed-effect degradation model is proposed. SSADT accelerated by temperature stress is conducted to Y11X-1419 type of electrical connectors, and the storage reliability is assessed with the SSADT data. Compared with the result obtained from accelerated life test, the reliability estimation of 32-year storage period for electrical connectors obtained from S SADT data only have a difference of 0.869%, which validates the accuracy of the degradation model and the feasibility of the test data statistic analysis method put forward.展开更多
Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degrad...Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.展开更多
Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accura...Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accurately, quickly, and economically. With the promotion of the national strategy of civil-military integration, ALT will be widely used in the research and development(R&D) of various types of products, and the ALT plan design theory will face further challenges. To aid engineers in selecting appropriate theories and to stimulate researchers to develop the theories required in engineering, with focus on the demands for theory research that arise from the implementation of ALT, this paper reviews and summarizes the development of ALT plan design theory. The development of the theory and method for planning optimal ALT for location-scale distribution, which is the most applied and mature theory of designing the optimal ALT plan, are described in detail. Taking this as the center of radiation, some problems that ALT now faces, such as the verification of the statistical model, limitation of sample size, solutions of resource limits, optimization of the test arrangement, and management of product complexity, are discussed, and the general ideas and methods of solving these problems are analyzed. Suggestions for selecting appropriate ALT plan design theories are proposed, and the urgent solved theory problems and opinions of their solutions are proposed. Based on the principle of convenience for engineers to select appropriate methods according to the problems found in practice, this paper reviews the development of optimal ALT plan design theory by taking the engineering problems arising from the ALT implementation as the main thread, provides guidelines on selecting appropriate theories for engineers, and proposes opinions about the urgent solved theory problems for researchers.展开更多
Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation ...Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.展开更多
In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure c...In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.展开更多
Internet of Things (IOT) is a conceptual vision to connect things in order to create a ubiquitous computing world. In order to create such an ever-present network, a simple, reliable, and cost-effective technology is ...Internet of Things (IOT) is a conceptual vision to connect things in order to create a ubiquitous computing world. In order to create such an ever-present network, a simple, reliable, and cost-effective technology is crucial. Wireless sensor network (WSN) is an important wireless technology that has wide variety of applications and provides unlimited future potentials for IOT. Since WSNs in IOT will be used in varying and challenging applications and environments, reliability and reliability testing of WSN hardware becomes extremely important. In accelerated reliability testing, test stresses are increased to cut down the time required to obtain a weakening effect similar to one resulting from normal service conditions in the field. This paper introduces three common difficulties that engineers may experience in qualitative accelerated testing of WSN devices: 1. Challenges in use of standard accelerated tests, 2. Challenges in component-level testing, and 3. Challenges in testing of prototypes. The paper will also introduce examples from real life reliability research and accelerated tests to clarify the presented challenges.展开更多
Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical load...Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.50876038,50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85℃/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing.
基金Supported by National Natural Science Foundation of China(Grant No.51405447)International Science&Technology Cooperation Program of China(Grant No.2015DFA71400)
文摘Constant stress accelerated life tests(ALTs) can be applied to obtain a high estimation accuracy of reliability measure?ments, but these are time?consuming tests. Progressive stress ALTs can yield failures more quickly but cannot guaran tee the estimation accuracy of reliability measurements. In this paper, a progressive?constant combination stress ALT is proposed to combine the merits of both tests. The optimal plan, in which the design variables are the initial pro?gressive stress level, the progressive stress ramp rate, the sample allocation proportion of the progressive stress and the constant stress level, is determined using the principle of minimizing the asymptotic variance of the maximum likelihood estimator of the natural log reliable life for the connectors. A comparison between the optimal PCCSALT plan and the CSALT plan with the same sample size and estimation accuracy shows that the test time is reduced by 13.59% by applying the PCCSALT.
基金supported by National Natural Science Foundation of China (Grant No. 50935002,Grant No. 51075370,Grant No. 51105341)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2007AA04Z409)Civil Aerospace Science and Technology Pre-research Project of China (Grant No. B122006 2302)
文摘As few or no failures occur during accelerated life test,it is difficult to assess reliability for long-life products with traditional life tests.Reliability assessment using degradation data of product performance over time becomes a significant approach.Aerospace electrical connector is researched in this paper.Through the analysis of failure mechanism,the performance degradation law is obtained and the statistical model for degradation failure is set up; according to the research on statistical analysis methods for degradation data,accelerated life test theory and method for aerospace electrical connector based on performance degradation is proposed by improving time series analysis method,and the storage reliability is assessed for Y11X series of aerospace electrical connector with degradation data from accelerated degradation test.The result obtained is basically consistent with that obtained from accelerated life test based on failure data,and the two estimates of product's characteristic life only have a difference of 8.7%,but the test time shortens about a half.As a result,a systemic approach is proposed for reliability assessment of highly reliable and long-life aerospace product.
文摘Introduction:Rotatory chair testing has been used to evaluate horizontal canal function.Frequently used tests include sinusoidal harmonic acceleration test(SHAT)and velocity step test(VST).Objectives:Assessment of age effect on the SHAT and VST and assessment of test-retest reliability of the parameters of those two tests.Methods:A prospective study was performed on 100 subjects with no ear or vestibular complaints and normal vestibular evaluation.They were divided into two groups;Group A:below 50 years of age and Group B:50 years of age or above.SHAT was presented at frequencies 0.02,0.04,0.08,0.16,0.32,0.64 Hz with a peak velocity of 60°/s.VST was performed using a maximum velocity of 100°/s with acceleration and deceleration of 200°/s2.Thirty subjects were tested twice to assess reliability.Results:Study participants ranged in age from 20 to 67 years.Regarding group A,the mean age was30.92±7.31 and 55.36±4.61 for group B.No significant differences were found in SHAT parameters between the two groups.As well,there was no significant difference in VST per-rotatory time constant,however,post-rotatory time constant was significantly longer for Group B(P value<0.05).Intraclass correlation coefficient(ICC)values showed moderate to good reliability(ICC 0.5800.818)for SHAT parameters for the lower frequencies and indicated moderate reliability for VST time constant(ICC 0.5090.652).Conclusions:Age has no significant effect on the parameters of SHAT and VST.Test-retest reliability is generally good for both tests.
文摘Based on the theoretical inference and experiment verification,a method was proposed to carry out the accelerated reliability qualification testing. First,theoretical inference was used to get the acceleration coefficients of super Gauss vibration stress and temperature stress. Then, by applying these coefficients, an accelerated reliability qualification testing curve was obtained from the standard tests. Finally,the actual experiment on a digital marine control device was carried out under the proposed testing method.The experiment result shows that the proposed method can reduce the total experiment time and improve the efficiency of the reliability qualification test.
基金The Cui Can Project of Chinese Academy of Sciences(No.KZCC-EW-102)the National High Technology Research and Development Program of China(863 Program)(No.2015AA03A101,2013AA03A116)
文摘In order to achieve quick and accurate lifetime prediction of LED lighting products under the testing time of 2 000 h, a method of online testing of luminous flux is proposed under the condition of temperature stress.Exponential fitting of lumen maintenance, the Bayesian estimation of failure probability, the Weibull distribution of lifetime and the Arrhenius model of the decay rate are used in combination to acquire the distribution of failure probability over time at the ambient temperatures of 25 ℃. The lifetime test of the same lamps based on the Energy Star standard under the testing time of 6 000 h is also implemented to verify the effectiveness of the method. The errors of lifetimes acquired with the proposed method are 7%, 4%, 3% and 1% at the failure probabilities of 62. 3%, 10%, 5% and 1%,respectively.
文摘This article introduces the current situation of the smart then describes the relationship of meter reliability characteristics meter's reliability and the failure mechanisms at first, and combined with its Bathtub Curve. It also introduces both the feasible failure tree model for meter lifecycle prediction based on actual experiences and meter reliability prediction methodology by SN 29500 norms based on this model. This article also brings forward that it is necessary that the "Learning Factor" shall be adopted in meter reliability prediction for new materials, new process, and customized parts by referring to GJB/Z299C. Thereafter, this article also tries to apply IEC 62059 and JB/T 50070 to introduce the feasible method for the lifecycle prediction result verification by accelerated lifecycle test. Furthermore, the article also explores ways to increase the firmware reliability in smart meter.
基金supported by National Natural Science Foundation of China(Grant Nos.50935002,51075370,51105341,51275480)Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1100777)Zhejiang Provincial Key Scientific and Technological Innovation Team(Grant No.2010R50005)
文摘In order to get a rapid assessment on the storage reliability of high-reliable and long-life products within the storage period, accelerated degradation test data with a large amount of reliability information of product is adopted. Conducting a constant-stress accelerated degradation test(CSADT) is generally very costly as it requires a large sample size and long time for test. To overcome this problem, it is necessary to carry out research on modeling and statistical analysis methods of step-stress accelerated degradation test (SSADT). Taking electrical connectors as the object, a research is conducted on statistical model and assessment method for SSADT. On the basis of mixed-effect degradation path model, the statistical model of SSADT for electrical connectors is presented, the maximum likelihood method for SSADT data based on mixed-effect degradation model is proposed. SSADT accelerated by temperature stress is conducted to Y11X-1419 type of electrical connectors, and the storage reliability is assessed with the SSADT data. Compared with the result obtained from accelerated life test, the reliability estimation of 32-year storage period for electrical connectors obtained from S SADT data only have a difference of 0.869%, which validates the accuracy of the degradation model and the feasibility of the test data statistic analysis method put forward.
基金supported by the Natural Science Foundation of Hunan Province(2018JJ2282)
文摘Reliability enhancement testing(RET) is an accelerated testing which hastens the performance degradation process to surface its inherent defects of design and manufacture. It is an important hypothesis that the degradation mechanism of the RET is the same as the one of the normal stress condition. In order to check the consistency of two mechanisms, we conduct two enhancement tests with a missile servo system as an object of the study, and preprocess two sets of test data to establish the accelerated degradation models regarding the temperature change rate that is assumed to be the main applied stress of the servo system during the natural storage. Based on the accelerated degradation models and natural storage profile of the servo system, we provide and demonstrate a procedure to check the consistency of two mechanisms by checking the correlation and difference of two sets of degradation data. The results indicate that the two degradation mechanisms are significantly consistent with each other.
基金Supported by National Natural Science Foundation of China(Grant No.51275480,51305402,51405447)International Science & Technology Cooperation Program of China(Grant No.2015DFA71400)
文摘Accelerated life test(ALT) is currently the main method of assessing product reliability rapidly, and the design of efficient test plans is a critical step to ensure that ALTs can assess the product reliability accurately, quickly, and economically. With the promotion of the national strategy of civil-military integration, ALT will be widely used in the research and development(R&D) of various types of products, and the ALT plan design theory will face further challenges. To aid engineers in selecting appropriate theories and to stimulate researchers to develop the theories required in engineering, with focus on the demands for theory research that arise from the implementation of ALT, this paper reviews and summarizes the development of ALT plan design theory. The development of the theory and method for planning optimal ALT for location-scale distribution, which is the most applied and mature theory of designing the optimal ALT plan, are described in detail. Taking this as the center of radiation, some problems that ALT now faces, such as the verification of the statistical model, limitation of sample size, solutions of resource limits, optimization of the test arrangement, and management of product complexity, are discussed, and the general ideas and methods of solving these problems are analyzed. Suggestions for selecting appropriate ALT plan design theories are proposed, and the urgent solved theory problems and opinions of their solutions are proposed. Based on the principle of convenience for engineers to select appropriate methods according to the problems found in practice, this paper reviews the development of optimal ALT plan design theory by taking the engineering problems arising from the ALT implementation as the main thread, provides guidelines on selecting appropriate theories for engineers, and proposes opinions about the urgent solved theory problems for researchers.
文摘Accelerated destructive degradation tests(ADDTs)are powerful to provide reliability information in the degradation processes with destructive measurements.In order to carry out an ADDT efficiently,both the estimation precision of parameters and the test cost should be considered.On the basis of the given degradation model and failure criterion,a multiple-objective optimization model for the design of ADDTs is proposed.Under constrains of the maximum measurement time,the total sample size and the number of stress levels,a comprehensive target function is suggested to reflect both the precision of lifetime estimation and total cost,and the optimal test plan is obtained,which is composed by optimal choices for samples size,measurement frequency,and the number of measurements at each stress level.A real example is illustrated to demonstrate the implementation of the proposed approach.
文摘In the past,only one performance parameter was considered in the reliability estimation of micro-electro-mechanical system (MEMS) accelerometers,resulting in a one-sided reliability evaluation. Aiming at the failure condition of large range MEMS accelerometers in high temperature environment,the corresponding accelerated degradation test is designed. According to the degradation condition of zero bias and scale factor,multiple dependent reliability estimation of large range MEMS accelerometers is carried out. The results show that the multiple dependent reliability estimation of the large range MEMS accelerometers can improve the accuracy of the estimation and get more accurate results.
文摘Internet of Things (IOT) is a conceptual vision to connect things in order to create a ubiquitous computing world. In order to create such an ever-present network, a simple, reliable, and cost-effective technology is crucial. Wireless sensor network (WSN) is an important wireless technology that has wide variety of applications and provides unlimited future potentials for IOT. Since WSNs in IOT will be used in varying and challenging applications and environments, reliability and reliability testing of WSN hardware becomes extremely important. In accelerated reliability testing, test stresses are increased to cut down the time required to obtain a weakening effect similar to one resulting from normal service conditions in the field. This paper introduces three common difficulties that engineers may experience in qualitative accelerated testing of WSN devices: 1. Challenges in use of standard accelerated tests, 2. Challenges in component-level testing, and 3. Challenges in testing of prototypes. The paper will also introduce examples from real life reliability research and accelerated tests to clarify the presented challenges.
文摘Parametric Accelerated Life Testing (ALT) was used to improve the reliability of ice-maker system with a fractured helix upper dispenser in field. By using bond graphs and state equations, a variety of mechanical loads in the assembly were analyzed. The acceleration factor was derived from a generalized life-stress failure model with a new load concept. To reproduce the failure modes and mechanisms causing the fracture, new sample size equation was derived. The sample size equation with the acceleration factor also enabled the parametric accelerated life testing to quickly reproduce early failure in field. Consequently, the failure modes and mechanisms found were identical with those of the failed sample. The design of this testing should help an engineer uncover the design parameters affecting the reliability of fractured helix upper dispenser in field. By eliminating the design flaws, gaps and weldline, the B1 life of the redesign of helix upper dispenser is now guaranteed to be over 10 years with a yearly failure rate of 0.1% that is the reliability quantitative test specifications (RQ).