At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under...At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.展开更多
Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in...Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with WeibuU probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor.展开更多
Objective To evaluate the reliability and validity of the Chinese version of addiction severity index (ASI)-5th version (ASI-C-5), in illegal drug users receiving methadone maintenance treatment (MMT) in China. ...Objective To evaluate the reliability and validity of the Chinese version of addiction severity index (ASI)-5th version (ASI-C-5), in illegal drug users receiving methadone maintenance treatment (MMT) in China. Methods One hundred and eighty-six heroin addicts (144 men and 42 women) receivihg MMT at three clinics in Guizhou province, southwest China, were recmited. They were all interviewed with a questionnaire of ASI-C-5 and 35 were re-interviewed at an interval of seven days to assess its test-retest reliability. Results Cronbach's alpha for internal consistency of CSs varied from 0.60 to 0.81 in all domains. Test-retest reliability of composite scores (CSs) of ASI-C-5 were satisfactory (r=0.38-0.97). Based on item analysis and expert's suggestions, five items were deleted and one item was modified in ASI-C-5. Criterion validity of ASI-C-5 was found acceptable, as compared to addicts' self-rating anxiety scale (SAS) and self-rating depression scale (SDS) (r=0.59 and 0.45) except for social support rating scale (SSRS). Conclusions ASI-C-5 can be used for heroin addicts receiving MMT with acceptable reliability and validity.展开更多
This paper describes the application of reliability-centered maintenance methodology to the development of maintenance plan for a steam-process plant. The main objective of reliability-centered maintenance is the cost...This paper describes the application of reliability-centered maintenance methodology to the development of maintenance plan for a steam-process plant. The main objective of reliability-centered maintenance is the cost-effective maintenance of the plant components inherent reliability value. The process-steam plant consists of fire-tube boiler, steam distribution, dryer, feed-water pump and process heater. Within this context, a maintenance program for the plant is carried out based on this reliability-centered maintenance concept. Applying of the reliability-centered maintenance methodology showed that the main time between failures for the plant equipments and the probability of sudden equipment failures are decreased. The proposed labor program is carried out. The results show that the labor cost decreases from 295200 $/year to 220800 $/year (about 25.8% of the total labor cost) for the proposed preventive maintenance planning. Moreover, the downtime cost of the plant components is investigated. The proposed PM planning results indicate a saving of about 80% of the total downtime cost as compared with that of current maintenance. In addition, the proposed spare parts programs for the plant components are generated. The results show that about 22.17% of the annual spare parts cost are saved when proposed preventive maintenance planning other current maintenance once. Based on these results, the application of the predictive maintenance should be applied.展开更多
When the bridge components needing maintenance are the world problem at present,and the health monitoring system is considered to be a very helpful tool for solving this problem.In this paper,a large number of s...When the bridge components needing maintenance are the world problem at present,and the health monitoring system is considered to be a very helpful tool for solving this problem.In this paper,a large number of strain data acquired from the structural health monitoring system(SHMS)installed on a continuous rigid frame bridge are adopted to do reliability assessment.Firstly,a calculation method of punctiform time-dependent reliability is proposed based on the basic reliability theory,and introduced how to calculate reliability of the bridge by using the stress data transformed from the strain data.Secondly,combined with“Three Sigma”principle and the basic pressure safety reserve requirement,the critical load effects distribution function of the bridge is defined,and then the maintenance reliability threshold for controlling the unfavorable load state which appears in the early operation stage of this type bridge is suggested,and then the combination of bridge maintenance management and health monitoring system is realized.Finally,the transformed stress distribution certifies that the load effects of concrete bridges practically have a normal distribution;as for the concrete continuous rigid frame bridge with C50 strength grade concrete,the retrofit reliability threshold should be valued at 6.13.The methodology suggested in this article can help bridge engineers do effective maintenance of bridges,which can effectively extend the service life of the bridge and bring better economic and social benefits.展开更多
The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. I...The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.展开更多
Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important...Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important to minimize its probability.Reliability is one of the most effcient and important method to study safe operation probability of hydraulic systems.In this research,the reliability of hydraulic system of four rotary drilling machines in Sarcheshmeh Copper Mine in Iran has been analyzed.The data analysis shows that the time between failures(TBF)of Machines A and C obey the Weibull(2P)and Weibull(3P)distribution,respectively.Also,the TBF of Machines B and D obey the lognormal distribution.With regard to reliability plots of hydraulic systems,preventive reliability-based maintenance time intervals for 80%reliability levels for machines in this system are 10 h.展开更多
Equipment plays an important role in open pit mining industry and its cost competence at efficient operation and maintenance techniques centered on reliability can lead to significant cost reduction.The application of...Equipment plays an important role in open pit mining industry and its cost competence at efficient operation and maintenance techniques centered on reliability can lead to significant cost reduction.The application of optimal maintenance process was investigated for minimizing the equipment breakdowns and downtimes in Sungun Copper Mine.It results in the improved efficiency and productivity of the equipment and lowered expenses as well as the increased profit margin.The field operating data of 10 trucks are used to estimate the failure and maintenance profile for each component,and modeling and simulation are accomplished by using reliability block diagram method.Trend analysis was then conducted to select proper probabilistic model for maintenance profile.Then reliability of the system was evaluated and importance of each component was computed by weighted importance measure method.This analysis led to identify the items with critical impact on availability of overall equipment in order to prioritize improvement decisions.Later,the availability of trucks was evaluated using Monte Carlo simulation and it is revealed that the uptime of the trucks is around 11000 h at 12000 operation hours.Finally,uncertainty analysis was performed to account for the uncertainty sources in data and models.展开更多
Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tas...Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.展开更多
This study identifies the main numerical characteristics of the Komatsu WB93R-5 backhoe loaders reliability indicators.To study the characteristics of the reliability indicators,a methodology for experimental research...This study identifies the main numerical characteristics of the Komatsu WB93R-5 backhoe loaders reliability indicators.To study the characteristics of the reliability indicators,a methodology for experimental research has been developed,using the complex,comparative and formal method,as well as the systematic,cybernetic and statistical approach.This study is a continuation of a study conducted by the author for another period.展开更多
The amalgamation procedure is actual when using structural methods of reliability.This may apply as the case of the action of a complex of damaging processes on a structural element and the case of the action of a cer...The amalgamation procedure is actual when using structural methods of reliability.This may apply as the case of the action of a complex of damaging processes on a structural element and the case of the action of a certain damaging process on a system of elements.Classical methods of reliability are poorly adapted for powertrain mechanical systems with a series structural scheme of elements subjected to the gradual influence of several degradation processes.The problem of amalgamation of individual indicators is exacerbated at the stage of operation when diagnosing the technical state of the mechanical system.The application of the classical rule of amalgamation by multiplying the probabilities of survival leads to the effect of over-maintenance.New rules of amalgamation have been developed,which deprive the assessment of the reliability of excessive conservatism.The complex index of the technical condition is offered—the resource safety index(RSI).Its use determines the remaining lifetime.The algorithm for searching the RSI contains an assessment of the criticality of the failure.The search of RSI under the influence of the complex of damaging processes on the element of the powertrain system is demonstrated.The efficiency of the RSI method is shown by the example of the reliability assessment of aircraft bolts.Application of the RSI method increases the guaranteed lifetime by 4-10 times compared with traditional methods.展开更多
Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was propo...Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.展开更多
In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the...In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.展开更多
The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyze...The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.展开更多
System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annea...System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.展开更多
Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design...Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.展开更多
Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. Howeve...Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. However, reliability for its quantitative measure has not been established yet and its establishment was the aim of the current study. Twenty-seven individuals with clinically tight hamstring muscles were recruited. On two separate sessions, the lumbopelvic curvature was evaluated in sitting when the right knee was moved from 90° flexion to 10° flexion on 15 occasions using a flexible ruler by two examiners on Day 1 and one on Day 2. Lines drawn tangential to the lumbopelvic curvature were traced at T12 and S2 vertebral levels and the angle between the two vertical lines was calculated. Using Day 1 data, the minimum number of repetitions and inter-examiner reliability were assessed. Inter-session reliability was also examined. As a result, there was no statistical difference (P?> 0.05) in the mean absolute difference between the mean value of N-1 and N repetitions (6 ≤ N ≤ 15) in the lumbopelvic curvature angle, indicating that five was considered the minimum number of repetitions. Intraclass correlation coefficient (ICC)(1, 5)?for the inter-session reliability and ICC(2, 5)?for the inter-examiner reliability was 0.97 and 0.93, respectively, indicating excellent reliability. The measure for the lumbopelvic curvature during active knee extension in sitting, which was established in the current study, will be a foundation for further research regarding the relative flexibility of the lumbar and adjunct regions.展开更多
With the warranty requirements of key and important devices,the compound preventive warranty policy was introduced.For the effectiveness of compound preventive maintenance, the maintenance mode of periodic replacement...With the warranty requirements of key and important devices,the compound preventive warranty policy was introduced.For the effectiveness of compound preventive maintenance, the maintenance mode of periodic replacement with functional checks was adopted, its failure risk analysis was carried on, and the warranty reliability model was established. On the basis of above research,a numerical example was given to illustrate the engineering application and generality of the warranty reliability model.展开更多
In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis softwar...In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis software (2-point-Method). In addition to this method, a flexible ruler can also be used to measure lumbopelvic sagittal alignment without image analysis software. This study primarily aimed to investigate the minimum number of repetitions, inter-session reliability and inter-examiner reliability of two alternative methods of measurement in a secondary analysis of our previous study. A flexible ruler was used to measure lumbopelvic curvature during AKEiS when the knee reached 10° flexion from 27 individuals with clinically tight hamstring muscles and subsequently analyzed. Lumbopelvic sagittal alignment was evaluated for the region between T12 and S2 using the maximum depth to the curvature (Max-Method) or depth to the curvature at the middle point between T12 and S2 vertebral levels (Mid-Method). It was determined that four repetitions for the Max-Method and 11 repetitions for the Mid-Method were required for the minimum number of repetitions, respectively. Inter-session reliability and inter-examiner reliability were assessed using Intraclass Correlation Coefficients and were 0.91 and 0.91 for the Max-Method and 0.90 and 0.91 for the Mid-Method, respectively. The current study suggests that the Mid-Method would not be recommended for use in the clinical setting as 11 repetitions of data sampling is required. The 2-point-Method or Max-Method may be promising but the ideal measurement method will be identified when the validity of these methods has been established.展开更多
This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installatio...This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.展开更多
基金This researchwas supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA133)the Natural Science Foundation of Gansu(No.21JR7RA258).
文摘At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.
基金supported by National Basic Research Program of China (973 Program, Grant No. 2003CB317001)Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 07A018)+1 种基金Hunan Provincial Natural Science Foundation of China (Grant No. 07JJ5074)National Natural Science Foundation of China (Grant No. 50875082)
文摘Reliability model of a mechanical product system will be newly reconstructed and maintenance cost will increase because failed parts can be replaced with new components during service, which should be accounted for in system design. In this paper, a reliability model and reliability-based design optimization methodology for maintenance are presented. First, based on the time-to-failure density function of the part of the system, the age distributions of all parts of the system during service are investigated, a reliability model of the mechanical system for maintenance is developed. Then, reliability simulations of the systems with WeibuU probability density functions are performed, the system minimum reliability and steady reliability for maintenance are defined based on reliability simulation during the life cycle of the system. Thirdly, a maintenance cost model is developed based on replacement rates of the parts, a reliability-based design optimization model for maintenance is presented, in which total life cycle cost is considered as design objective and system reliability as design constrain. Finally, the reliability-based design optimization methodology for maintenance is used to design of a link ring for the chain conveyor, which shows that optimal design with the lowest maintenance cost can be obtained, and minimum reliability and steady reliability of the system can satisfy requirement of system reliability during service of the chain conveyor.
基金China Medical Board in New York, (Grant No. CMB 04-797)
文摘Objective To evaluate the reliability and validity of the Chinese version of addiction severity index (ASI)-5th version (ASI-C-5), in illegal drug users receiving methadone maintenance treatment (MMT) in China. Methods One hundred and eighty-six heroin addicts (144 men and 42 women) receivihg MMT at three clinics in Guizhou province, southwest China, were recmited. They were all interviewed with a questionnaire of ASI-C-5 and 35 were re-interviewed at an interval of seven days to assess its test-retest reliability. Results Cronbach's alpha for internal consistency of CSs varied from 0.60 to 0.81 in all domains. Test-retest reliability of composite scores (CSs) of ASI-C-5 were satisfactory (r=0.38-0.97). Based on item analysis and expert's suggestions, five items were deleted and one item was modified in ASI-C-5. Criterion validity of ASI-C-5 was found acceptable, as compared to addicts' self-rating anxiety scale (SAS) and self-rating depression scale (SDS) (r=0.59 and 0.45) except for social support rating scale (SSRS). Conclusions ASI-C-5 can be used for heroin addicts receiving MMT with acceptable reliability and validity.
文摘This paper describes the application of reliability-centered maintenance methodology to the development of maintenance plan for a steam-process plant. The main objective of reliability-centered maintenance is the cost-effective maintenance of the plant components inherent reliability value. The process-steam plant consists of fire-tube boiler, steam distribution, dryer, feed-water pump and process heater. Within this context, a maintenance program for the plant is carried out based on this reliability-centered maintenance concept. Applying of the reliability-centered maintenance methodology showed that the main time between failures for the plant equipments and the probability of sudden equipment failures are decreased. The proposed labor program is carried out. The results show that the labor cost decreases from 295200 $/year to 220800 $/year (about 25.8% of the total labor cost) for the proposed preventive maintenance planning. Moreover, the downtime cost of the plant components is investigated. The proposed PM planning results indicate a saving of about 80% of the total downtime cost as compared with that of current maintenance. In addition, the proposed spare parts programs for the plant components are generated. The results show that about 22.17% of the annual spare parts cost are saved when proposed preventive maintenance planning other current maintenance once. Based on these results, the application of the predictive maintenance should be applied.
文摘When the bridge components needing maintenance are the world problem at present,and the health monitoring system is considered to be a very helpful tool for solving this problem.In this paper,a large number of strain data acquired from the structural health monitoring system(SHMS)installed on a continuous rigid frame bridge are adopted to do reliability assessment.Firstly,a calculation method of punctiform time-dependent reliability is proposed based on the basic reliability theory,and introduced how to calculate reliability of the bridge by using the stress data transformed from the strain data.Secondly,combined with“Three Sigma”principle and the basic pressure safety reserve requirement,the critical load effects distribution function of the bridge is defined,and then the maintenance reliability threshold for controlling the unfavorable load state which appears in the early operation stage of this type bridge is suggested,and then the combination of bridge maintenance management and health monitoring system is realized.Finally,the transformed stress distribution certifies that the load effects of concrete bridges practically have a normal distribution;as for the concrete continuous rigid frame bridge with C50 strength grade concrete,the retrofit reliability threshold should be valued at 6.13.The methodology suggested in this article can help bridge engineers do effective maintenance of bridges,which can effectively extend the service life of the bridge and bring better economic and social benefits.
基金supported by National Natural Science Foundation of China (Grant No. 51005041)Fundamental Research Funds for the Central Universities of China (Grant No. N090303005)Key National Science & Technology Special Project on High-Grade CNC Machine Tools and Basic Manufacturing Equipment of China (Grant No. 2010ZX04014-014)
文摘The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.
基金the R&D center of Iranian National Copper Company for its financial support
文摘Hydraulic system has a critical and important role in drilling machines.Any failure in this system leads to problems in power system and machine operation.Since the failure cannot be prevented entirely,it is important to minimize its probability.Reliability is one of the most effcient and important method to study safe operation probability of hydraulic systems.In this research,the reliability of hydraulic system of four rotary drilling machines in Sarcheshmeh Copper Mine in Iran has been analyzed.The data analysis shows that the time between failures(TBF)of Machines A and C obey the Weibull(2P)and Weibull(3P)distribution,respectively.Also,the TBF of Machines B and D obey the lognormal distribution.With regard to reliability plots of hydraulic systems,preventive reliability-based maintenance time intervals for 80%reliability levels for machines in this system are 10 h.
基金the support of the Maintenance Department of Mobin Co.Sungun Copper mine
文摘Equipment plays an important role in open pit mining industry and its cost competence at efficient operation and maintenance techniques centered on reliability can lead to significant cost reduction.The application of optimal maintenance process was investigated for minimizing the equipment breakdowns and downtimes in Sungun Copper Mine.It results in the improved efficiency and productivity of the equipment and lowered expenses as well as the increased profit margin.The field operating data of 10 trucks are used to estimate the failure and maintenance profile for each component,and modeling and simulation are accomplished by using reliability block diagram method.Trend analysis was then conducted to select proper probabilistic model for maintenance profile.Then reliability of the system was evaluated and importance of each component was computed by weighted importance measure method.This analysis led to identify the items with critical impact on availability of overall equipment in order to prioritize improvement decisions.Later,the availability of trucks was evaluated using Monte Carlo simulation and it is revealed that the uptime of the trucks is around 11000 h at 12000 operation hours.Finally,uncertainty analysis was performed to account for the uncertainty sources in data and models.
基金the National Natural Science Foundation of China under Grant(51907166)the Science and Technology Project of CHINA RAILWAY under Grant(2017J001-F&N2018G023)the Sichuan Science and Technology Program under Grant(2018GZ0020).
文摘Conventional maintenance mode for the traction power supply system(TPSS)is to perform scheduled regular maintenance activities for power supply equipment,while such maintenance mode may result in undue maintenance tasks and low efficiency due to different degradation processes of different sorts of equipment.To address this problem,this paper introduces a preventive opportunistic maintenance(POM)method for TPSS based on equipment reliability.Firstly,a POM model is established by considering the equipment reliability degradation process based on Weibull distribution.Then,by considering the total power outage time in the planned operation cycle of TPSS as the optimization objective,the optimal maintenance scheme of TPSS is formulated by iterative method of maintenance strategies.The proposed method is verified by introducing practical maintenance strategies and fault record data of the traction transformer,circuit breaker and disconnector in an actual TPSS of a railway administration.Results show that the presented method can make full use of the existing fault data to develop a POM scheme for TPSS.It can improve maintenance efficiency and reduce power outage time,providing guidance to formulate scientific maintenance strategies for TPSS.
文摘This study identifies the main numerical characteristics of the Komatsu WB93R-5 backhoe loaders reliability indicators.To study the characteristics of the reliability indicators,a methodology for experimental research has been developed,using the complex,comparative and formal method,as well as the systematic,cybernetic and statistical approach.This study is a continuation of a study conducted by the author for another period.
文摘The amalgamation procedure is actual when using structural methods of reliability.This may apply as the case of the action of a complex of damaging processes on a structural element and the case of the action of a certain damaging process on a system of elements.Classical methods of reliability are poorly adapted for powertrain mechanical systems with a series structural scheme of elements subjected to the gradual influence of several degradation processes.The problem of amalgamation of individual indicators is exacerbated at the stage of operation when diagnosing the technical state of the mechanical system.The application of the classical rule of amalgamation by multiplying the probabilities of survival leads to the effect of over-maintenance.New rules of amalgamation have been developed,which deprive the assessment of the reliability of excessive conservatism.The complex index of the technical condition is offered—the resource safety index(RSI).Its use determines the remaining lifetime.The algorithm for searching the RSI contains an assessment of the criticality of the failure.The search of RSI under the influence of the complex of damaging processes on the element of the powertrain system is demonstrated.The efficiency of the RSI method is shown by the example of the reliability assessment of aircraft bolts.Application of the RSI method increases the guaranteed lifetime by 4-10 times compared with traditional methods.
文摘Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.
基金Project(2006AA04Z405) supported by the National High Technology Research and Development Program of ChinaProject(3102019) supported by Beijing Municipal Natural Science Foundation,China
文摘In order to present a new method for analyzing the reliability of a two-link flexible robot manipulator,Lagrange dynamics differential equations of the two-link flexible robot manipulator were established by using the integrated modal method and the multi-body system dynamics method.By using the Monte Carlo method,the random sample values of the dynamic parameters were obtained and Lagrange dynamics differential equations were solved for each random sample value which revealed their displacement,speed and acceleration.On this basis,dynamic stresses and deformations were obtained.By taking the maximum values of the stresses and the deformations as output responses and the random sample values of dynamic parameters as input quantities,extremum response surface functions were established.A number of random samples were then obtained by using the Monte Carlo method and then the reliability was analyzed by using the extremum response surface method.The results show that the extremum response surface method is an efficient and fast reliability analysis method with high-accuracy for the two-link flexible robot manipulator.
文摘The hydraulic system plays an important role in supplying power and its transition to other working parts of a coal shearer machine. In this paper, the reliability of the hydraulic system of a drum shearer was analyzed. A case study was done in the Tabas Coal Mine in Iran for failure data collection. The results of the statistical analysis show that the time between failures (TBF) data of this system followed the 3-parameters Weibull distribution. There is about a 54% chance that the hydraulic system of the drum shearer will not fail for the first 50 h of operation. The developed model shows that the reliability of the hydraulic system reduces to a zero value after approximately 1 650 hours of operation. The failure rate of this system decreases when time increases. Therefore, corrective maintenance (run-to-t^ailure) was selected as the best maintenance strategy for it.
文摘System reliability can produce a strong influence on the performance of the heat exchanger network(HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms(GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.
文摘Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.
文摘Relative flexibility between the hamstring and lumbar extensor muscles, which can be evaluated using lumbopelvic curvature during active knee extension in sitting, can sometimes be assessed in physical therapy. However, reliability for its quantitative measure has not been established yet and its establishment was the aim of the current study. Twenty-seven individuals with clinically tight hamstring muscles were recruited. On two separate sessions, the lumbopelvic curvature was evaluated in sitting when the right knee was moved from 90° flexion to 10° flexion on 15 occasions using a flexible ruler by two examiners on Day 1 and one on Day 2. Lines drawn tangential to the lumbopelvic curvature were traced at T12 and S2 vertebral levels and the angle between the two vertical lines was calculated. Using Day 1 data, the minimum number of repetitions and inter-examiner reliability were assessed. Inter-session reliability was also examined. As a result, there was no statistical difference (P?> 0.05) in the mean absolute difference between the mean value of N-1 and N repetitions (6 ≤ N ≤ 15) in the lumbopelvic curvature angle, indicating that five was considered the minimum number of repetitions. Intraclass correlation coefficient (ICC)(1, 5)?for the inter-session reliability and ICC(2, 5)?for the inter-examiner reliability was 0.97 and 0.93, respectively, indicating excellent reliability. The measure for the lumbopelvic curvature during active knee extension in sitting, which was established in the current study, will be a foundation for further research regarding the relative flexibility of the lumbar and adjunct regions.
文摘With the warranty requirements of key and important devices,the compound preventive warranty policy was introduced.For the effectiveness of compound preventive maintenance, the maintenance mode of periodic replacement with functional checks was adopted, its failure risk analysis was carried on, and the warranty reliability model was established. On the basis of above research,a numerical example was given to illustrate the engineering application and generality of the warranty reliability model.
文摘In a previous study, we established reliability of a method for determining the angle of lumbopelvic sagittal alignment during active knee extension in sitting (AKEiS) using a flexible ruler and image analysis software (2-point-Method). In addition to this method, a flexible ruler can also be used to measure lumbopelvic sagittal alignment without image analysis software. This study primarily aimed to investigate the minimum number of repetitions, inter-session reliability and inter-examiner reliability of two alternative methods of measurement in a secondary analysis of our previous study. A flexible ruler was used to measure lumbopelvic curvature during AKEiS when the knee reached 10° flexion from 27 individuals with clinically tight hamstring muscles and subsequently analyzed. Lumbopelvic sagittal alignment was evaluated for the region between T12 and S2 using the maximum depth to the curvature (Max-Method) or depth to the curvature at the middle point between T12 and S2 vertebral levels (Mid-Method). It was determined that four repetitions for the Max-Method and 11 repetitions for the Mid-Method were required for the minimum number of repetitions, respectively. Inter-session reliability and inter-examiner reliability were assessed using Intraclass Correlation Coefficients and were 0.91 and 0.91 for the Max-Method and 0.90 and 0.91 for the Mid-Method, respectively. The current study suggests that the Mid-Method would not be recommended for use in the clinical setting as 11 repetitions of data sampling is required. The 2-point-Method or Max-Method may be promising but the ideal measurement method will be identified when the validity of these methods has been established.
基金supported by the National Natural Science Foundation of China(72001026).
文摘This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.