Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to ...Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.展开更多
Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimizat...This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.展开更多
To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integr...To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.展开更多
Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as th...Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.展开更多
Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) str...Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified.展开更多
This paper develops a new approach for reliability-based design(RBD)of tunnel face support pressure from a quantile value perspective.A surrogate model is constructed to calculate the collapse pressures of the random ...This paper develops a new approach for reliability-based design(RBD)of tunnel face support pressure from a quantile value perspective.A surrogate model is constructed to calculate the collapse pressures of the random samples generated by a single run of Monte Carlo simulation(MCS).The cumulative distribution function(CDF)of the collapse pressure is then obtained and the support pressure aiming at a target failure probability is chosen as the upper quantile value of the collapse pressures.The proposed approach does not require repetitive reliability analyses compared to the existing methods.Moreover,a direct relationship between the target failure probability and the required support pressure is established.An illustrative example is used to demonstrate the implementation procedure.The accuracy of the reliability-based support pressures is verified by direct MCS incorporating with three-dimensional numerical simulations.Finally,the influencing factors,including the sample size of MCS,the correlation coefficient between random variables,the choice of experimental points,and the surrogate model,are investigated.This method can play a complementary role to available approaches due to its advantages of simplicity and efficiency.展开更多
Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonun...Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.展开更多
We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation metho...We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.展开更多
Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the effici...Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure a...An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters.展开更多
The use of underground spaces is becoming increasingly important in this era of rapid urbanization and population growth.However,underground spaces are susceptible to water ingress,which may trigger the deterioration ...The use of underground spaces is becoming increasingly important in this era of rapid urbanization and population growth.However,underground spaces are susceptible to water ingress,which may trigger the deterioration of their structural performance and reduce their serviceability.This highlights the importance of the proper design of lining structures with an emphasis on water penetration.This study develops a reliability-based approach to guide the design of lining structures used for underground spaces.The equivalent depth of water seepage is considered for a two-dimensional lining structure in the presence of the randomness and spatial correlation of the water seepage distribution.The probabilistic behavior of the equivalent seepage depth that is derived serves as the basis for reliability-based design of lining structures.A simple design criterion is developed.An example is presented to demonstrate the applicability of the proposed approach.展开更多
In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computatio...In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.展开更多
In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reli...In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reliability optimum design of the structure under stochastic wave load. The fatigue damage model and the yield failure reliability analyzing model are used in the paper. The reliability of the models and the effectiveness of genetic algorithm are shown by the results of optimum design.展开更多
In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of...In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.展开更多
Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two brin...Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.展开更多
The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process o...The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.展开更多
The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms prov...The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.展开更多
Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps ...Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.展开更多
基金supported by the National Natural Science Foundation of China under Grant(Number:52105136)the Hong Kong Scholar program under Grant(Number:XJ2022013)China Postdoctoral Science Foundation under Grant(Number:2021M690290)Academic Excellence Foundation of BUAA under Grant(Number:BY2004103).
文摘Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function,leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy.In this case,by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory,a random forest(RF)model is presented to enhance the computing efficiency of reliability degree;moreover,by embedding the RF model into multilevel optimization model,an efficient RF-assisted fatigue reliability-based design optimization framework is developed.Regarding the low-cycle fatigue reliability-based design optimization of aeroengine turbine disc as a case,the effectiveness of the presented framework is validated.The reliabilitybased design optimization results exhibit that the proposed framework holds high computing accuracy and computing efficiency.The current efforts shed a light on the theory/method development of reliability-based design optimization of complex engineering structures.
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金the National Natural Science Foundation of China(No.10772070)Ph.D Programs Foundation of Ministry of Education of China(No.20070487064).
文摘This paper proposed a reliability design model for composite materials under the mixture of random and interval variables. Together with the inverse reliability analysis technique, the sequential single-loop optimization method is applied to the reliability-based design of composites. In the sequential single-loop optimization, the optimization and the reliability analysis are decoupled to improve the computational efficiency. As shown in examples, the minimum weight problems under the constraint of structural reliability are solved for laminated composites. The Particle Swarm Optimization (PSO) algorithm is utilized to search for the optimal solutions. The design results indicate that, under the mixture of random and interval variables, the method that combines the sequential single-loop optimization and the PSO algorithm can deal effectively with the reliability-based design of composites.
基金Projects(51275138,51475025)supported by the National Natural Science Foundation of ChinaProject(12531109)supported by the Science Foundation of Heilongjiang Provincial Department of Education,China+1 种基金Projects(XJ2015002,G-YZ90)supported by Hong Kong Scholars Program,ChinaProject(2015M580037)supported by Postdoctoral Science Foundation of China
文摘To improve the computational efficiency of the reliability-based design optimization(RBDO) of flexible mechanism, particle swarm optimization-advanced extremum response surface method(PSO-AERSM) was proposed by integrating particle swarm optimization(PSO) algorithm and advanced extremum response surface method(AERSM). Firstly, the AERSM was developed and its mathematical model was established based on artificial neural network, and the PSO algorithm was investigated. And then the RBDO model of flexible mechanism was presented based on AERSM and PSO. Finally, regarding cross-sectional area as design variable, the reliability optimization of flexible mechanism was implemented subject to reliability degree and uncertainties based on the proposed approach. The optimization results show that the cross-section sizes obviously reduce by 22.96 mm^2 while keeping reliability degree. Through the comparison of methods, it is demonstrated that the AERSM holds high computational efficiency while keeping computational precision for the RBDO of flexible mechanism, and PSO algorithm minimizes the response of the objective function. The efforts of this work provide a useful sight for the reliability optimization of flexible mechanism, and enrich and develop the reliability theory as well.
基金This project is supported by National Natural Science Foundation of China(No.50575072)Outstanding Youth Fund of Hunan Education Department, China (No.04B007).
文摘Conventional reliability-based design optimization (RBDO) requires to use the most probable point (MPP) method for a probabilistic analysis of the reliability constraints. A new approach is presented, called as the minimum error point (MEP) method or the MEP based method, for reliability-based design optimization, whose idea is to minimize the error produced by approximating performance functions. The MEP based method uses the first order Taylor's expansion at MEP instead of MPP. Examples demonstrate that the MEP based design optimization can ensure product reliability at the required level, which is very imperative for many important engineering systems. The MEP based reliability design optimization method is feasible and is considered as an alternative for solving reliability design optimization problems. The MEP based method is more robust than the commonly used MPP based method for some irregular performance functions.
文摘Reliability-based design (RBD) is being adopted by geotechnical design codes worldwide, and it is therefore necessary that rock engineering practice evolves to embrace RBD. This paper examines the Hoek-Brown (H-B) strength criterion within the RBD framework, and presents three distinct analyses using a Bayesian approach. Firstly, a compilation of intact compressive strength test data for six rock types is used to examine uncertainty and variability in the estimated H-B parameters m and σc, and corresponding predicted axial strength. The results suggest that within- and between-rock type variabilities are so large that these parameters need to be determined from rock testing campaigns, rather than reference values being used. The second analysis uses an extensive set of compressive and tensile (both direct and indirect) strength data for a granodiorite, together with a new Bayesian regression model, to develop joint probability distributions of m and σc suitable for use in RBD. This analysis also shows how compressive and indirect tensile strength data may be robustly used to fit an H-B criterion. The third analysis uses the granodiorite data to investigate the important matter of developing characteristic strength criteria. Using definitions from Eurocode 7, a formal Bayesian interpretation of characteristic strength is proposed and used to analyse strength data to generate a characteristic criterion. These criteria are presented in terms of characteristic parameters mk and σck, the values of which are shown to depend on the testing regime used to obtain the strength data. The paper confirms that careful use of appropriate Bayesian statistical analysis allows the H-B criterion to be brought within the framework of RBD. It also reveals that testing guidelines such as the International Society for Rock Mechanics and Rock Engineering (ISRM) suggested methods will require modification in order to support RBD. Importantly, the need to fully understand the implications of uncertainty in nonlinear strength criteria is identified.
基金supported by the National Natural Science Foundation of China(Grant No.51608407).
文摘This paper develops a new approach for reliability-based design(RBD)of tunnel face support pressure from a quantile value perspective.A surrogate model is constructed to calculate the collapse pressures of the random samples generated by a single run of Monte Carlo simulation(MCS).The cumulative distribution function(CDF)of the collapse pressure is then obtained and the support pressure aiming at a target failure probability is chosen as the upper quantile value of the collapse pressures.The proposed approach does not require repetitive reliability analyses compared to the existing methods.Moreover,a direct relationship between the target failure probability and the required support pressure is established.An illustrative example is used to demonstrate the implementation procedure.The accuracy of the reliability-based support pressures is verified by direct MCS incorporating with three-dimensional numerical simulations.Finally,the influencing factors,including the sample size of MCS,the correlation coefficient between random variables,the choice of experimental points,and the surrogate model,are investigated.This method can play a complementary role to available approaches due to its advantages of simplicity and efficiency.
基金National Natural Science Foundation of China under Grant Nos.51921006 and 51725801Fundamental Research Funds for the Central Universities under Grant No.FRFCU5710093320Heilongjiang Touyan Innovation Team Program。
文摘Reinforcement corrosion is the main cause of performance deterioration of reinforced concrete(RC)structures.Limited research has been performed to investigate the life-cycle cost(LCC)of coastal bridge piers with nonuniform corrosion using different materials.In this study,a reliability-based design optimization(RBDO)procedure is improved for the design of coastal bridge piers using six groups of commonly used materials,i.e.,normal performance concrete(NPC)with black steel(BS)rebar,high strength steel(HSS)rebar,epoxy coated(EC)rebar,and stainless steel(SS)rebar(named NPC-BS,NPC-HSS,NPC-EC,and NPC-SS,respectively),NPC with BS with silane soakage on the pier surface(named NPC-Silane),and high-performance concrete(HPC)with BS rebar(named HPC-BS).First,the RBDO procedure is improved for the design optimization of coastal bridge piers,and a bridge is selected to illustrate the procedure.Then,reliability analysis of the pier designed with each group of materials is carried out to obtain the time-dependent reliability in terms of the ultimate and serviceability performances.Next,the repair time of the pier is predicted based on the time-dependent reliability indices.Finally,the time-dependent LCCs for the pier are obtained for the selection of the optimal design.
基金supported by the Defense Industrial Technology Development Program (Grant Nos.A2120110001 and B2120110011)111 Project (Grant No.B07009)the National Natural Science Foundation of China (Grant Nos.11002013,90816024 and 10876100)
文摘We review recent research activities on structural reliability analysis,reliability-based design optimization(RBDO) and applications in complex engineering structural design.Several novel uncertainty propagation methods and reliability models,which are the basis of the reliability assessment,are given.In addition,recent developments on reliability evaluation and sensitivity analysis are highlighted as well as implementation strategies for RBDO.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant 51490662)the Funds for Distinguished Young Scientists of Hunan Province (Grant 14JJ1016)+1 种基金the State Key Program of the National Science Foundation of China (11232004)the Heavy-duty Tractor Intelligent Manufacturing Technology Research and System Development (Grant 2016YFD0701105)
文摘Use of multidisciplinary analysis in reliabilitybased design optimization(RBDO) results in the emergence of the important method of reliability-based multidisciplinary design optimization(RBMDO). To enhance the efficiency and convergence of the overall solution process,a decoupling algorithm for RBMDO is proposed herein.Firstly, to decouple the multidisciplinary analysis using the individual disciplinary feasible(IDF) approach, the RBMDO is converted into a conventional form of RBDO. Secondly,the incremental shifting vector(ISV) strategy is adopted to decouple the nested optimization of RBDO into a sequential iteration process composed of design optimization and reliability analysis, thereby improving the efficiency significantly. Finally, the proposed RBMDO method is applied to the design of two actual electronic products: an aerial camera and a car pad. For these two applications, two RBMDO models are created, each containing several finite element models(FEMs) and relatively strong coupling between the involved disciplines. The computational results demonstrate the effectiveness of the proposed method.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant No.12072104)the National Key R&D Program of China(No.2018YFC0406703)。
文摘An efficient reliability-based design optimization method for the support structures of monopile offshore wind turbines is proposed herein.First,parametric finite element analysis(FEA)models of the support structure are established by considering stochastic variables.Subsequently,a surrogate model is constructed using a radial basis function(RBF)neural network to replace the time-consuming FEA.The uncertainties of loads,material properties,key sizes of structural components,and soil properties are considered.The uncertainty of soil properties is characterized by the variabilities of the unit weight,friction angle,and elastic modulus of soil.Structure reliability is determined via Monte Carlo simulation,and five limit states are considered,i.e.,structural stresses,tower top displacements,mudline rotation,buckling,and natural frequency.Based on the RBF surrogate model and particle swarm optimization algorithm,an optimal design is established to minimize the volume.Results show that the proposed method can yield an optimal design that satisfies the target reliability and that the constructed RBF surrogate model significantly improves the optimization efficiency.Furthermore,the uncertainty of soil parameters significantly affects the optimization results,and increasing the monopile diameter is a cost-effective approach to cope with the uncertainty of soil parameters.
文摘The use of underground spaces is becoming increasingly important in this era of rapid urbanization and population growth.However,underground spaces are susceptible to water ingress,which may trigger the deterioration of their structural performance and reduce their serviceability.This highlights the importance of the proper design of lining structures with an emphasis on water penetration.This study develops a reliability-based approach to guide the design of lining structures used for underground spaces.The equivalent depth of water seepage is considered for a two-dimensional lining structure in the presence of the randomness and spatial correlation of the water seepage distribution.The probabilistic behavior of the equivalent seepage depth that is derived serves as the basis for reliability-based design of lining structures.A simple design criterion is developed.An example is presented to demonstrate the applicability of the proposed approach.
文摘In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.
基金This work was financially supported by the National Science Foundation of China
文摘In this paper, the problem of reliability-based optimal design of simple offshore platform is studied, and a nonlinear fatigue damage model based on damage mechanics and genetic algorithms are used in the fatigue reliability optimum design of the structure under stochastic wave load. The fatigue damage model and the yield failure reliability analyzing model are used in the paper. The reliability of the models and the effectiveness of genetic algorithm are shown by the results of optimum design.
基金support from the Key R&D Program of Shandong Province(Grant No.2019JZZY010431)the National Natural Science Foundation of China(Grant No.52175130)+1 种基金the Sichuan Science and Technology Program(Grant No.2022YFQ0087)the Sichuan Science and Technology Innovation Seedling Project Funding Projeet(Grant No.2021112)are gratefully acknowledged.
文摘In uncertainty analysis and reliability-based multidisciplinary design and optimization(RBMDO)of engineering structures,the saddlepoint approximation(SA)method can be utilized to enhance the accuracy and efficiency of reliability evaluation.However,the random variables involved in SA should be easy to handle.Additionally,the corresponding saddlepoint equation should not be complicated.Both of them limit the application of SA for engineering problems.The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments.However,the traditional moment matching method is not very accurate generally.In order to take advantage of the SA method and the moment matching method to enhance the efficiency of design and optimization,a fourth-moment saddlepoint approximation(FMSA)method is introduced into RBMDO.In FMSA,the approximate cumulative generating functions are constructed based on the first four moments of the limit state function.The probability density function and cumulative distribution function are estimated based on this approximate cumulative generating function.Furthermore,the FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and reliability assessment,which is based on the performance measure approach strategy.Two engineering examples are introduced to verify the effectiveness of proposed method.
基金financial support from the National Natural Science Foundation of China(52008408)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012088)+1 种基金Science and Technology Program of Guangzhou,China(202102021017)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22hytd06).
文摘Geotechnical design codes and guidelines are all switching from traditional factor of safety design to modern load and resistance factor design(LRFD)or partial factor design(PFD),in the belief that the latter two bring more flexibility and reliability consistency across various design scenarios,thus produce safe and cost-effective design outcomes.This paper first reviews the LRFD and PFD developed for geotechnical applications.A total of seven methods to calibrate the load and resistance factors are also introduced.The ability of the LRFD and PFD to produce designs with consistent reliability is examined and compared to that of a traditional factor of safety method using two examples of the bearing capacity of strip footings and the global stability of soil nail walls.Results showed that the framework of LRFD offers no apparent advantages over working stress design(WSD)in achieving more consistent reliability for geotechnical structures;the dispersion in design probabilities of failure could be five to seven orders of magnitude difference.The variation will be reduced to three orders if using the PFD.Neither reducing the variability in soil shear strength parameters nor allocating partial resistance factors with respect to soil types would efficiently harmonize the reliability levels when dealing with multiple soil layer conditions.In addition,the uniformity of reliability levels is insensitive to calibrations with or without presetting the load factors.This study provides insights into the LRFD and PFD frameworks currently developed for geotechnical applications.
基金support of projects of Ministry of Education of Czech Republic KONTAKT No.LH12062previous achievements worked out under the project of Technological Agency of Czech Republic No.TA01011019.
文摘The aim of the paper is to present a newly developed approach for reliability-based design optimization. It is based on double loop framework where the outer loop of algorithm covers the optimization part of process of reliability-based optimization and reliability constrains are calculated in inner loop. Innovation of suggested approach is in application of newly developed optimization strategy based on multilevel simulation using an advanced Latin Hypercube Sampling technique. This method is called Aimed multilevel sampling and it is designated for optimization of problems where only limited number of simulations is possible to perform due to enormous com- putational demands.
基金Projects(71601015,71501013,71471014)supported by the National Natural Science Foundation of ChinaProject(2015JBM060)supported by the Fundamental Research Funds for the Central Universities,China
文摘The violation of monotonicity on reliability measures(RMs)usually makes the mathematical programming algorithms less efficient in solving the reliability-based user equilibrium(RUE)problem.The swapping algorithms provide a simple and convenient alternative to search traffic equilibrium since they are derivative-free and require weaker monotonicity.However,the existing swapping algorithms are usually based on linear swapping processes which cannot naturally avoid overswapping,and the step-size parameter update methods do not take the swapping feature into account.In this paper,we suggest a self-regulating pairwise swapping algorithm(SRPSA)to search RUE.SRPSA comprises an RM-based pairwise swapping process(RMPSP),a parameter self-diminishing operator and a termination criterion.SRPSA does not need to check the feasibility of either solutions or step-size parameter.It is suggested from the numerical analyses that SRPSA is effective and can swap to the quasi-RUE very fast.Therefore,SRPSA offers a good approach to generate initial points for those superior local search algorithms.
基金National Natural Science Foundation of China (5 9875 0 3 7)
文摘Based on the theory of reliability-based structural shape optimization, exact expressions of the sensibility using the stochastic finite element method for contact problems were derived in detail, and the basic steps of structural optimization were given. A coattail-type tenon/mortise of an aero-engine was optimized. In this model, the maximum equivalent stress of the nodes on the boundary of the tenon was the objective function; the width of tooth’s neck and the side surface’s slope angle of a tenon were design variables, with constraints of tension stress, extrusion stress and reliability index. The result showed that the distributions of the contact pressure between tenon and mortise, the equivalence stress and reliability index were more reasonable. It validates the correctness of the optimization model and the reliability-based structural shape optimization, and provides valuable references for structural design of the tenon/mortise.