Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
Wireless Mesh Network (WMN) is a new-type wireless network. Its core idea is that any of its wireless equipment can act as both an Access Point (AP) and a router. Each node in the network can send and receive signals ...Wireless Mesh Network (WMN) is a new-type wireless network. Its core idea is that any of its wireless equipment can act as both an Access Point (AP) and a router. Each node in the network can send and receive signals as well as directly communicate with one or several peer nodes. One important issue to be considered in wireless Mesh networks is how to secure reliable data transmission in multi-hop links. To solve the problem, the 3GPP system architecture proposes two functionalities: ARQ and HARQ. This paper presents two HARQ schemes, namely hop-by-hop and edge-to-edge, and three ARQ schemes: hop-by-hop, edge-to-edge, and last-hop. Moreover, it proposes three solutions for WMNs from the perspective of protocol stock design: layered cooperative mechanism, relay ARQ mechanism and multi-hop mechanism.展开更多
Under the current situation, China' s rapid economic development, various new science, emerge in an endless stream of new technology, under the environment of coal mine industry, seize the opportunity, by virtue of i...Under the current situation, China' s rapid economic development, various new science, emerge in an endless stream of new technology, under the environment of coal mine industry, seize the opportunity, by virtue of its original advantages, coupled with technology introduction and innovation consciousness of the play, ushered in a new period of development, into the modern coal mining era. CAN bus technology is a new technology which has the typical data transmission in coal mining, the introduction of a certain degree of CAN bus technology, not only improve the efficiency of data transmission, at the same time, in terms of reliability and greatly enhance. In this paper, to a certain extent on the introduction of the CAN bus technology, and on this basis, based on the CAN bus in the coal mine field data transmission reliability research and analysis展开更多
Through the creation and construction of a curvature sensor of accelerometer type, using the spectral curvature concept or curvature energy that measures curvature in Volts/m<sup>3</sup>, an autonomous and...Through the creation and construction of a curvature sensor of accelerometer type, using the spectral curvature concept or curvature energy that measures curvature in Volts/m<sup>3</sup>, an autonomous and mobile censorship of curvature sensing with reliable data transmission/reception in real time and remote position is designed and constructed considering the spectra of curvature of the measured curvature energy during the advance of the prototype as the normed measure by with β , a constant rationalized parameter according with the required advance of the mobile device in the control scale of their velocity. Likewise, the sensed curvature data are digitalized through wireless interconnectivity using a HC-05 Module with a programmable device that includes logic blocks whose interconnection and functionality can be configured according to the sensor measure in situs. Also an application is planted to the obtaining of an energy plus due to the curvature that could be used in the displacement of a vehicle.展开更多
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
文摘Wireless Mesh Network (WMN) is a new-type wireless network. Its core idea is that any of its wireless equipment can act as both an Access Point (AP) and a router. Each node in the network can send and receive signals as well as directly communicate with one or several peer nodes. One important issue to be considered in wireless Mesh networks is how to secure reliable data transmission in multi-hop links. To solve the problem, the 3GPP system architecture proposes two functionalities: ARQ and HARQ. This paper presents two HARQ schemes, namely hop-by-hop and edge-to-edge, and three ARQ schemes: hop-by-hop, edge-to-edge, and last-hop. Moreover, it proposes three solutions for WMNs from the perspective of protocol stock design: layered cooperative mechanism, relay ARQ mechanism and multi-hop mechanism.
文摘Under the current situation, China' s rapid economic development, various new science, emerge in an endless stream of new technology, under the environment of coal mine industry, seize the opportunity, by virtue of its original advantages, coupled with technology introduction and innovation consciousness of the play, ushered in a new period of development, into the modern coal mining era. CAN bus technology is a new technology which has the typical data transmission in coal mining, the introduction of a certain degree of CAN bus technology, not only improve the efficiency of data transmission, at the same time, in terms of reliability and greatly enhance. In this paper, to a certain extent on the introduction of the CAN bus technology, and on this basis, based on the CAN bus in the coal mine field data transmission reliability research and analysis
文摘Through the creation and construction of a curvature sensor of accelerometer type, using the spectral curvature concept or curvature energy that measures curvature in Volts/m<sup>3</sup>, an autonomous and mobile censorship of curvature sensing with reliable data transmission/reception in real time and remote position is designed and constructed considering the spectra of curvature of the measured curvature energy during the advance of the prototype as the normed measure by with β , a constant rationalized parameter according with the required advance of the mobile device in the control scale of their velocity. Likewise, the sensed curvature data are digitalized through wireless interconnectivity using a HC-05 Module with a programmable device that includes logic blocks whose interconnection and functionality can be configured according to the sensor measure in situs. Also an application is planted to the obtaining of an energy plus due to the curvature that could be used in the displacement of a vehicle.