Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroug...Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroughly investigates the developmental trend of RUL prediction with machine learning(ML)algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions.The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper.The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers.Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented.The research core of common ML algorithms is given first time in a uniform format in chronological order.The algorithms are also compared from aspects of accuracy and characteristics comprehensively,and the novel and general improvement directions or opportunities including improvement in early prediction,local regeneration modeling,physical information fusion,generalized transfer learning,and hardware implementation are further outlooked.Finally,the methods of battery lifetime extension are summarized,and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked.Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future.This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.展开更多
For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency ...For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,...退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,采用极大似然估计(maximum likelihood estimation,MLE)算法估计退化模型参数与随机失效阈值分布系数;然后,在考虑随机失效阈值的基础上推导出设备剩余寿命的概率密度函数(probability density function,PDF),并基于Bayesian原理实时更新退化模型参数,实现对剩余寿命的在线预测。最后,将该方法应用于陀螺仪剩余寿命在线预测分析,结果表明该方法能够有效提高剩余寿命预测的精度与准确性。展开更多
基金funded by China Scholarship Council,The fund numbers are 202108320111,202208320055。
文摘Lithium-ion batteries are the most widely used energy storage devices,for which the accurate prediction of the remaining useful life(RUL)is crucial to their reliable operation and accident prevention.This work thoroughly investigates the developmental trend of RUL prediction with machine learning(ML)algorithms based on the objective screening and statistics of related papers over the past decade to analyze the research core and find future improvement directions.The possibility of extending lithium-ion battery lifetime using RUL prediction results is also explored in this paper.The ten most used ML algorithms for RUL prediction are first identified in 380 relevant papers.Then the general flow of RUL prediction and an in-depth introduction to the four most used signal pre-processing techniques in RUL prediction are presented.The research core of common ML algorithms is given first time in a uniform format in chronological order.The algorithms are also compared from aspects of accuracy and characteristics comprehensively,and the novel and general improvement directions or opportunities including improvement in early prediction,local regeneration modeling,physical information fusion,generalized transfer learning,and hardware implementation are further outlooked.Finally,the methods of battery lifetime extension are summarized,and the feasibility of using RUL as an indicator for extending battery lifetime is outlooked.Battery lifetime can be extended by optimizing the charging profile serval times according to the accurate RUL prediction results online in the future.This paper aims to give inspiration to the future improvement of ML algorithms in battery RUL prediction and lifetime extension strategy.
基金supported by the National Defense Foundation of China(71601183)the China Postdoctoral Science Foundation(2017M623415)
文摘For the large number of nonlinear degradation devices existing in a project, the existing methods have not systematically studied the effects of random effect on the remaining lifetime(RL),the accuracy and efficiency of the parameters estimation are not high, and the current degradation state of the target device is not accurately estimated. In this paper, a nonlinear Wiener degradation model with random effect is proposed and the corresponding probability density function(PDF) of the first hitting time(FHT)is deduced. A parameter estimation method based on modified expectation maximum(EM) algorithm is proposed to obtain the estimated value of fixed coefficient and the priori value of random coefficient in the model. The posterior value of the random coefficient and the current degradation state of target device are updated synchronously by the state space model(SSM) and the Kalman filter algorithm. The PDF of RL with random effect is deduced. A simulation example is analyzed to verify that the proposed method has the obvious advantage over the existing methods in parameter estimation error and RL prediction accuracy.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.
文摘退化失效阈值是影响设备剩余寿命预测的重要因素。针对现有剩余寿命预测方法忽略失效阈值随机性影响的问题,提出考虑随机失效阈值的设备剩余寿命在线预测方法。首先,基于带测量误差与随机效应的非线性Wiener过程构建设备退化模型;其次,采用极大似然估计(maximum likelihood estimation,MLE)算法估计退化模型参数与随机失效阈值分布系数;然后,在考虑随机失效阈值的基础上推导出设备剩余寿命的概率密度函数(probability density function,PDF),并基于Bayesian原理实时更新退化模型参数,实现对剩余寿命的在线预测。最后,将该方法应用于陀螺仪剩余寿命在线预测分析,结果表明该方法能够有效提高剩余寿命预测的精度与准确性。