The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi...The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.展开更多
C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The compre...C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.展开更多
Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destr...Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destroyed. The interaction between the fluid and the rock leads to a series of micro geological processes, such as clastation, denudation, dissolution and deposition, in the small spaces connected by pores or throats, which control the accumulation and distribution of the remaining oil. These micro geological processes are the essential factors for the evolution of the reservoirs during development. This evolution makes the recovery of the remaining oil more complex.展开更多
To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D v...To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.展开更多
Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relati...Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.展开更多
Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanc...Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.展开更多
S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field developme...S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field development gradually faces a series of problems as rapid rise of water cut, rapid decline of output, high water cut of oil wells and others. In order to improve the effect of oilfield development, it is necessary to increase the output of the oilfield by adjusting wells for the potential in the oilfield. However, due to the high cost of drilling, operation and testing of offshore oilfields, offshore oilfields require more elaborate description of residual oil and adjustment wells. With the continuous downturn in international oil prices and the lack of new testing data in old oilfields, it is urgent to re-use the existing data in oilfields through innovative methods to achieve a detailed description of the remaining oil in the oilfields and improve the precision research of indexing wells and ensure the reliable implementation of adjustment wells. Based on the existing dynamic data of S oilfield, this paper proposes a new method to quantitatively evaluate water flooding coefficient by using tracer theory to establish tracer data, and quantitatively evaluates the vicinity of the fault by means of image reflection and potential superposition and find the residual oil in the imperfect area of the well network, combined with the numerical simulation method to realize the fine description of remaining oil and improve the research precision of the adjustment well. Through the research in this paper, S oilfield has proposed to location of six adjustment wells which has implemented two. The production confirmed that the method of this paper has some reliability, while the method of heavy oil in the high water cut stage of residual oil fine description. The research of enhanced oil recovery in the stage has certain guiding significance for heavy oil reservoirs.展开更多
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct...Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct relevant experiments on the basis of similarity principles and taking into account the layer geological characteristics of the reservoir.The displacement experiment’s total recovery rate is 41.35%.The changes in the remaining oil saturation at a millimeter-scale are examined using medical spiral computer tomography principles.In all experimental stages,regions exists where the oil saturation decline is more than 10.0%.The shrinkage percentage is 20.70%in the horizontal well production stage.The oil saturation reduction in other parts is less than 10.0%,and there are regions where the oil saturation increases in the conventional water flooding stage.展开更多
Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.H...Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.展开更多
In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservo...In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservoir over a short time.The results showed that among the widely used parameters indicative of oil maturity and migration, tetramethyl/monomethyl DBT and tricyclic terpane/(tricyclic terpane+C30 hopanoid) varied remarkably, and a positive correlation was observed between these two parameters.The variation of each of these parameters during waterflooding development was correlated with the flow effect of crude promoted by the water drive in oil reservoirs.A solid consistency was observed among the results of numerical simulation and development; the direction and pathway of waterflooding crude was indicated by Tetramethyl/monomethyl DBT, and the distribution region prediction of remaining oil hereby obtained.Therefore, these two parameters could be used as molecular tracers for the oil during waterflooding.This study would be of practical significance for geochemical dynamic monitoring and reservoir development.展开更多
Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performance...Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performances of ordinary polymer,glycerol,polymer in"sheet-net"structure and heterogeneous weak gel at the same viscosity and concentration,the relationship between the viscosity of polymer displacement agents and displacement performance was demonstrated,and the method of improving polymer flooding effect was worked out.The main mechanism of polymer flooding to increase oil recovery is the swept volume expansion of water injection due to polymer retention in porous media.The viscosity of polymer agents has no positive correlation with polymer flooding effect.Although polymer of"sheet-net"structure has strong capacity in increasing viscosity,it has poor compatibility with pore throat structure of reservoir rock,low injectivity and low shear resistance.Heterogeneous weak gel system has higher adsorption and capture capacity in porous media,which is easy to retain in porous media,and can effectively establish seepage resistance in high permeability layers(zones).Compared with polymer solutions with the same viscosity or concentration,it has stronger ability to expand swept volume.Long term injection of polymer flooding agents will inevitably lead to fluid entry profile reversal,and thus worsening of polymer flooding effect.Alternate injection of high retention and low or non-retention displacement agents can further improve the displacement effect of polymer flooding agents.展开更多
The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mecha...The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.展开更多
We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water...We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.展开更多
Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability r...Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.展开更多
The Linnan subsag is the main oil producer of the Linpan oil zone. Based on the oil group composition,gas chromatography data and biomarker analysis,it was indicated that crude oils from different oilfields varied gre...The Linnan subsag is the main oil producer of the Linpan oil zone. Based on the oil group composition,gas chromatography data and biomarker analysis,it was indicated that crude oils from different oilfields varied greatly in group composition and showed obvious heterogeneities in the aspects of precursor type,crude oil maturity and hydrocarbon depositional environment. According to the characteristics of source rocks,three oil populations can be distinguished,i.e.,the southern,northern and transitional oil populations. Furthermore,on the basis of post-reservoir reworking processes,the medium conditions of hydrocarbon-generating environment and differences in maturity,six oil families and twelve sub-families were distinquished. An integrated study suggested that the fac-tors leading to such heterogeneities in crude oil composition mainly include different source rocks,multi-stage oil/gas charging,geo-chromatographic effects during oil/gas migration,reservoir heterogeneities and various post-reservoir secondary alterations.展开更多
In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the...In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective.展开更多
Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type ...Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type of flow units was forecasted and the short-term cycle was classified into four types based on the two-dimensional characteristics of the flow units. The remaining oil was predicted by conceptual simulation,qualitative analysis and quantitative modeling. The results showed obvious control of the characteristics of reservoir flow units to the remaining oil. E and G units in type I and type II short-term cycles which are distributed continuously in large areas are mostly flooded,while the uncontrolled small isolated G flow unit in type III short-term cycles which were mainly made of F flow unit and F flow unit with continuous distribution become the accumulating place for remaining oil. Thus the development adjustment strategy should optimize the development of small-scale E and G units,strengthen the development of type III short-term cycles,and block out type I short-term cycles. This strategy improves the development of Pu53 block obviously.展开更多
The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfie...The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The mobility characteristics of remaining oil,the properties of remaining oil,and the next displacement methods in reservoirs either water-flooded or polymer-flooded are studied with rock permeability,oil saturation of coring wells,etc.The experimental results show that the hydrocarbons composition,viscosity,and mobility of remaining oil from both polymer-flooding and water-flooding reservoirs are heterogeneous,especially the former.Relative abundance of C 21- and C 21-C 40 hydrocarbons in polymer-flooding reservoirs is lower than that of water-flooding,but with more abundance of C 40+ hydrocarbons.It is then suggested that polymer flooding must have driven more C 40- hydrocarbons out of reservoir,which resulted in relatively enriched C 40+,more viscous oils,and poorer mobility.Remaining oil in water-flooding reservoirs is dominated by moderate viscosity oil with some low viscosity oil,while polymer-flooding mainly contained moderate viscosity oil with some high viscosity oil.In each oilfield and reservoir,displacement methods of remaining oil,viscosity,and concentration by polymer-solution can be adjusted by current viscosity of remaining oil and mobility ratio in a favorable range.A new basis and methods are suggested for the further development and enhanced oil recovery of remaining oil.展开更多
During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at diff...During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.展开更多
基金sponsored by Major Science and Technology Special Project of CNPC(Grant No.2023ZZ07)。
文摘The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation.
文摘C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period.
文摘Due to the continuous water percolation and soaking during development of the oilfields, the dynamic balance of a reservoir is altered by the fluid; and the rock framework, pores and throats will be reformed and destroyed. The interaction between the fluid and the rock leads to a series of micro geological processes, such as clastation, denudation, dissolution and deposition, in the small spaces connected by pores or throats, which control the accumulation and distribution of the remaining oil. These micro geological processes are the essential factors for the evolution of the reservoirs during development. This evolution makes the recovery of the remaining oil more complex.
基金National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(U19B6003-02-06)。
文摘To get a deeper understanding on the formation mechanisms and distribution laws of remaining oil during water flooding, and enhanced oil recovery(EOR) mechanisms by reversing water injection after water flooding, 3D visualization models of fractured-vuggy reservoir were constructed based on the elements and configuration of fractures and vugs, and typical fracture-vug structures by using advanced CT scanning and 3D printing technologies. Then, water flooding and reversing water injection experiments were conducted. The formation mechanisms of remaining oil during water flooding include inadequate injection-production well control, gravity difference between oil and water, interference between different flow channels, isolation by low connectivity channel, weak hydrodynamic force at the far end. Under the above effects, 7 kinds of remaining oil may come about, imperfect well-control oil, blind side oil, attic oil at the reservoir top, by-pass residual oil under gravity, by-pass residual oil in secondary channel, isolated oil in low connectivity channel, and remaining oil at far and weakly connected end. Some remaining oil can be recovered by reversing water injection after water flooding, but its EOR is related to the remaining oil type, fracture-cavity structure and reversing injection-production structure. Five of the above seven kinds of remaining oil can be produced by six EOR mechanisms of reversing water injection: gravity displacement, opening new flow channel, rising the outflow point, hydrodynamic force enhancement, vertically equilibrium displacement, and synergistic effect of hydrodynamic force and gravity.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Based on comprehensive analysis of core, well logging, seismic and production data, the multi-scale reservoir space, reservoir types, spatial shape and distribution of fractures and caves, and the configuration relationship with production wells in fracture-cavity carbonate reservoirs were studied systematically, the influence of them on the distribution of residual oil was analyzed, and the main controlling factors mode of residual oil distribution after water flooding was established. Enhanced oil recovery methods were studied considering the development practice of Tahe oilfield. Research shows that the main controlling factors of residual oil distribution after water flooding in fracture-cavity carbonate reservoirs can be classified into four categories: local high point, insufficient well control, flow channel shielding and weak hydrodynamic. It is a systematic project to improve oil recovery in fracture-cavity carbonate reservoirs. In the stage of natural depletion, production should be well regulated to prevent bottom water channeling. In the early stage of waterflooding, injection-production relationship should be constructed according to reservoir type, connectivity and spatial location to enhance control and producing degree of waterflooding and minimize remaining oil. In the middle and late stage, according to the main controlling factors and distribution characteristics of remaining oil after water flooding, remaining oil should be tapped precisely by making use of gravity differentiation and capillary force imbibition, enhancing well control, disturbing the flow field and so on. Meanwhile, backup technologies of reservoir stimulation, new injection media, intelligent optimization etc. should be developed, smooth shift from water injection to gas injection should be ensured to maximize oil recovery.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-005)the National Natural Science Foundation of China(51674271)
文摘Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.
文摘S oil field is a typical of water injection development of heavy oil reservoir in Bohai, and the formation of crude oil viscosity is 42 - 284 mPa?s. Due to the formation of crude oil viscosity, the oil field development gradually faces a series of problems as rapid rise of water cut, rapid decline of output, high water cut of oil wells and others. In order to improve the effect of oilfield development, it is necessary to increase the output of the oilfield by adjusting wells for the potential in the oilfield. However, due to the high cost of drilling, operation and testing of offshore oilfields, offshore oilfields require more elaborate description of residual oil and adjustment wells. With the continuous downturn in international oil prices and the lack of new testing data in old oilfields, it is urgent to re-use the existing data in oilfields through innovative methods to achieve a detailed description of the remaining oil in the oilfields and improve the precision research of indexing wells and ensure the reliable implementation of adjustment wells. Based on the existing dynamic data of S oilfield, this paper proposes a new method to quantitatively evaluate water flooding coefficient by using tracer theory to establish tracer data, and quantitatively evaluates the vicinity of the fault by means of image reflection and potential superposition and find the residual oil in the imperfect area of the well network, combined with the numerical simulation method to realize the fine description of remaining oil and improve the research precision of the adjustment well. Through the research in this paper, S oilfield has proposed to location of six adjustment wells which has implemented two. The production confirmed that the method of this paper has some reliability, while the method of heavy oil in the high water cut stage of residual oil fine description. The research of enhanced oil recovery in the stage has certain guiding significance for heavy oil reservoirs.
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
基金supported by the National Science and Technology Major Projects of China for Oil and Gas(Projects Nos.2016ZX05010 and 2016ZX05058).
文摘Oil saturation is a critical parameter when designing oil field development plans.This study focuses on the change of oil saturation during water flooding.Particularly,a meter-level artificial model is used to conduct relevant experiments on the basis of similarity principles and taking into account the layer geological characteristics of the reservoir.The displacement experiment’s total recovery rate is 41.35%.The changes in the remaining oil saturation at a millimeter-scale are examined using medical spiral computer tomography principles.In all experimental stages,regions exists where the oil saturation decline is more than 10.0%.The shrinkage percentage is 20.70%in the horizontal well production stage.The oil saturation reduction in other parts is less than 10.0%,and there are regions where the oil saturation increases in the conventional water flooding stage.
基金Project(KFJJ-TZ-2019-3)supported by the Open Project of Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs,ChinaProjects(51504275,51974344)supported by the National Natural Science Foundation of China。
文摘Water alternating gas(WAG)injection is a widely used strategy for enhancing oil recovery(EOR)during gas flooding,and the mechanisms,operating parameters,and influencing factors of which have been extensively studied.However,with respect to its capacity in expanding macroscopic sweep volume under varying heterogeneities,the related results appear inadequate.In this research,three cores with different heterogeneities were used and flooded by the joint water and CO_(2) WAG,then the effects of heterogeneity on oil recovery were determined.More importantly,the cores after CO_(2) WAG injection were investigated using the nuclear magnetic resonance(NMR)technique for remaining oil distribution research,which could help us to understand the capacity of CO_(2) WAG in enlarging sweep volume at different heterogeneities.The results show that the presence of heterogeneity may largely weaken the effectiveness of water flooding,the more severe the heterogeneity,the worse the water flooding.The WAG injection of CO_(2) performs well in EOR after water flooding for all the cores with different heterogeneities;however,it could barely form a complete or full sweep throughout the low-permeability region,and un-swept bypassed regions remain.The homogeneous core is better developed by the injection of the joint water and CO_(2) WAG than the heterogeneous and fractured cases.
基金supported by Jidong Oilfield Branch Com-pany of CNPC
文摘In this study, compositional characteristics of crude oil, including the variation of aliphatic, aromatic and pyrrolic nitrogen compounds, were systematically monitored and investigated in a high water-cut oil reservoir over a short time.The results showed that among the widely used parameters indicative of oil maturity and migration, tetramethyl/monomethyl DBT and tricyclic terpane/(tricyclic terpane+C30 hopanoid) varied remarkably, and a positive correlation was observed between these two parameters.The variation of each of these parameters during waterflooding development was correlated with the flow effect of crude promoted by the water drive in oil reservoirs.A solid consistency was observed among the results of numerical simulation and development; the direction and pathway of waterflooding crude was indicated by Tetramethyl/monomethyl DBT, and the distribution region prediction of remaining oil hereby obtained.Therefore, these two parameters could be used as molecular tracers for the oil during waterflooding.This study would be of practical significance for geochemical dynamic monitoring and reservoir development.
基金Supported by the National Major Special Project of Oil and Gas During the 13th Five-Year Plan Period(NO.2016ZX05058-003-010)General Program of National Natural Science Foundation of China(NO.51574086)Postdoctoral Innovative Talent Support Program of China(NO.BX20190065)。
文摘Taking reservoir rocks and fluids of the Daqing,Dagang and Changqing oilfields as research objects,the EOR mechanisms and technical approach of polymer flooding were discussed.By comparing the displacement performances of ordinary polymer,glycerol,polymer in"sheet-net"structure and heterogeneous weak gel at the same viscosity and concentration,the relationship between the viscosity of polymer displacement agents and displacement performance was demonstrated,and the method of improving polymer flooding effect was worked out.The main mechanism of polymer flooding to increase oil recovery is the swept volume expansion of water injection due to polymer retention in porous media.The viscosity of polymer agents has no positive correlation with polymer flooding effect.Although polymer of"sheet-net"structure has strong capacity in increasing viscosity,it has poor compatibility with pore throat structure of reservoir rock,low injectivity and low shear resistance.Heterogeneous weak gel system has higher adsorption and capture capacity in porous media,which is easy to retain in porous media,and can effectively establish seepage resistance in high permeability layers(zones).Compared with polymer solutions with the same viscosity or concentration,it has stronger ability to expand swept volume.Long term injection of polymer flooding agents will inevitably lead to fluid entry profile reversal,and thus worsening of polymer flooding effect.Alternate injection of high retention and low or non-retention displacement agents can further improve the displacement effect of polymer flooding agents.
文摘The distribution characteristics of the oil-water contact are the basis for the reservoir exploration and development and reserves evaluation. The reservoir with a tilted oil-water contact has a unique formation mechanism, and the understanding of its distribution and formation mechanism will directly affect the evaluations for the reservoir type, well deployment, selection of well pattern and type, determination of test section, and reserves evaluation. Based on the analysis of reservoir characteristics, petrophysical properties and geological structure in 40 reservoirs worldwide with tilted oil-water contacts, the progress of the research on the formation mechanisms of titled oil-water contacts is summarized in terms of the hydrodynamic conditions, reservoir heterogeneity, neotectonic movement and oil-gas exploitation. According to the formation mechanism of tilted oil-water contacts and the needs of exploration research, different aspects of research methods are summarized and classified, such as the calculation of equipotential surfaces for oil and water in the formation, analysis of formation pressure and analysis of reservoir physical properties and so on. Based upon statistical analysis, it is suggested that the degree of the inclination of the oil-water contact be divided based on the dip of oil-water contact(DipTOWC). The tilted oil-water contact is divided into three categories: large dip(DipTOWC≥55 m/km), medium dip(4 m/km≤DipTOWC55 m/km), and small dip(DipTOWC4 m/km). The classification and evaluation method can be combined with structure amplitude and reservoir property. The formation mechanism of domestic and international reservoirs with tilted oil-water contacts are summarized in this paper, which have important significance in guiding the exploration and development of the oilfield with tilted oil-water contacts, reserves evaluation, and well deployment.
基金sponsored by the China Postdoctoral Science Foundation Projects(2014M550779)
文摘We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.
文摘Heterogeneous reservoir characteristics for oilfield, choose HS-1 non-ionic surfactant and polymer formation in binary combination flooding system can significantly improve the rate of production of low permeability reservoir in heterogeneous reservoir. According to the core flooding experiment analyzed longitudinal heterogeneous models, single surfactant and a single polymer and polymer flooding of table binary complex drive effect. Studies show that binary combination flooding recovery effect is best, followed by polymer flooding, minimum of surfactant flooding, in heterogeneous reservoir.
基金This project was financially supported by the National Natural Science Foundation of China (Grant No. 40502013)
文摘The Linnan subsag is the main oil producer of the Linpan oil zone. Based on the oil group composition,gas chromatography data and biomarker analysis,it was indicated that crude oils from different oilfields varied greatly in group composition and showed obvious heterogeneities in the aspects of precursor type,crude oil maturity and hydrocarbon depositional environment. According to the characteristics of source rocks,three oil populations can be distinguished,i.e.,the southern,northern and transitional oil populations. Furthermore,on the basis of post-reservoir reworking processes,the medium conditions of hydrocarbon-generating environment and differences in maturity,six oil families and twelve sub-families were distinquished. An integrated study suggested that the fac-tors leading to such heterogeneities in crude oil composition mainly include different source rocks,multi-stage oil/gas charging,geo-chromatographic effects during oil/gas migration,reservoir heterogeneities and various post-reservoir secondary alterations.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-001)
文摘In view of the disadvantage that the absolute difference of time-lapse seismic(the difference between monitoring data and base data) is not only related to the change of oil saturation, but also closely related to the thickness of reservoir, a time-lapse seismic "relative difference method"(the ratio of monitoring data to base data) not affected by the thickness of reservoir but only related to the change of fluid saturation, is proposed through seismic forward modeling after fluid displacement simulation. Given the same change of fluid saturation, the absolute difference of time-lapse seismic conforms to the law of "tuning effect" and seismic reflection of "thin bed", and the remaining oil prediction method based on absolute difference of time-lapse seismic is only applicable to the reservoirs with uniform thickness smaller than the tuning thickness or with thickness greater than the tuning thickness. The relative difference of time-lapse seismic is not affected by reservoir thickness, but only related to the change of fluid saturation. It is applicable to all the deep-sea unconsolidated sandstone reservoirs which can exclude the effect of pressure, temperature, pore type and porosity on seismic. Therefore, the relation between the relative difference of time-lapse seismic and the change of fluid saturation, which is obtained from seismic forward modeling after Gassmann fluid displacement simulation, can be used to quantitatively predict the change of reservoir water saturation and then the distribution of the remaining oil. The application of this method in deep sea Zeta oil field in west Africa shows that it is reasonable and effective.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40602013, 40572078)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20060489002)
文摘Through natural partition and clustering analysis,four kinds of flow units were distinguished in Pu53 block,Pucheng Oilfield. Taking the short-term cycle as studying unit,the two-dimensional distribution of each type of flow units was forecasted and the short-term cycle was classified into four types based on the two-dimensional characteristics of the flow units. The remaining oil was predicted by conceptual simulation,qualitative analysis and quantitative modeling. The results showed obvious control of the characteristics of reservoir flow units to the remaining oil. E and G units in type I and type II short-term cycles which are distributed continuously in large areas are mostly flooded,while the uncontrolled small isolated G flow unit in type III short-term cycles which were mainly made of F flow unit and F flow unit with continuous distribution become the accumulating place for remaining oil. Thus the development adjustment strategy should optimize the development of small-scale E and G units,strengthen the development of type III short-term cycles,and block out type I short-term cycles. This strategy improves the development of Pu53 block obviously.
基金supported by National Basic Research Program of China(Grant No.2006CB701404)
文摘The experimental analysis of 21 crude oil samples shows a good correlation between high molecular-weight hydrocarbon components (C 40+) and viscosity.Forty-four remaining oil samples extracted from oil sands of oilfield development coring wells were analyzed by high-temperature gas chromatography (HTGC),for the relative abundance of C 21-,C 21-C 40 and C 40+ hydrocarbons.The relationship between viscosity of crude oil and C 40+ (%) hydrocarbons abundance is used to expect the viscosity of remaining oil.The mobility characteristics of remaining oil,the properties of remaining oil,and the next displacement methods in reservoirs either water-flooded or polymer-flooded are studied with rock permeability,oil saturation of coring wells,etc.The experimental results show that the hydrocarbons composition,viscosity,and mobility of remaining oil from both polymer-flooding and water-flooding reservoirs are heterogeneous,especially the former.Relative abundance of C 21- and C 21-C 40 hydrocarbons in polymer-flooding reservoirs is lower than that of water-flooding,but with more abundance of C 40+ hydrocarbons.It is then suggested that polymer flooding must have driven more C 40- hydrocarbons out of reservoir,which resulted in relatively enriched C 40+,more viscous oils,and poorer mobility.Remaining oil in water-flooding reservoirs is dominated by moderate viscosity oil with some low viscosity oil,while polymer-flooding mainly contained moderate viscosity oil with some high viscosity oil.In each oilfield and reservoir,displacement methods of remaining oil,viscosity,and concentration by polymer-solution can be adjusted by current viscosity of remaining oil and mobility ratio in a favorable range.A new basis and methods are suggested for the further development and enhanced oil recovery of remaining oil.
文摘During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.