The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, ...The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.展开更多
The uncertainty of time, quantity and quality of recycling products leads to the bad stability and flexibility of remanufacturing logistics networks, while general design only covers the minimizing logistics cost, so ...The uncertainty of time, quantity and quality of recycling products leads to the bad stability and flexibility of remanufacturing logistics networks, while general design only covers the minimizing logistics cost, so robust design is presented to solve it. The mathematical model of remanufacturing logistics networks is built on the stochastic distribution of uncontrollable factors, and robust objectives are presented. The basic elements of robust design of remanufacturing logistics are redefined, and each part of mathematical model is explained in detail as well. Robust design of remanufacturing logistics networks is a problem of multi-objective optimization in essence.展开更多
As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of c...As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.展开更多
Logistics networks (LNs) are essential for the transportation and distribution of goods or services from suppliers to consumers. However, LNs with complex structures are more vulnerable to disruptions due to natural d...Logistics networks (LNs) are essential for the transportation and distribution of goods or services from suppliers to consumers. However, LNs with complex structures are more vulnerable to disruptions due to natural disasters and accidents. To address the LN post-disruption response strategy optimization problem, this study proposes a novel two-stage stochastic programming model with robust delivery time constraints. The proposed model jointly optimizes the new-line-opening and rerouting decisions in the face of uncertain transport demands and transportation times. To enhance the robustness of the response strategy obtained, the conditional value at risk (CVaR) criterion is utilized to reduce the operational risk, and robust constraints based on the scenario-based uncertainty sets are proposed to guarantee the delivery time requirement. An equivalent tractable mixed-integer linear programming reformulation is further derived by linearizing the CVaR objective function and dualizing the infinite number of robust constraints into finite ones. A case study based on the practical operations of the JD LN is conducted to validate the practical significance of the proposed model. A comparison with the rerouting strategy and two benchmark models demonstrates the superiority of the proposed model in terms of operational cost, delivery time, and loading rate.展开更多
基金This project is supported by Provincial Natural Science Foundation of Shanghai, China (No. 02ZH14060).
文摘The uncertainty of time, quantity and quality of recycling products leads tothe bad stability and flexibility of remanufacturing logistics networks, and general design onlycovered the minimizing logistics cost, thus, robust design is presented here to solve theuncertainty. The mathematical model of remanufacturing logistics networks is built based onstochastic distribution of uncontrollable factors, and robust objectives are presented. Theintegration of mathematical simulation and design of experiment method is performed to do sensitiveanalysis. The influence of each factor and level on the system is investigated, and the main factorsand optimum combination are studied. The numbers of factors, level of each factor and designprocess of experiment are investigated as well. Finally, the process of robust design based ondesign of experiment is demonstrated by a detailed example.
基金the Shanghai National Scientific Foundation (02ZH14060)
文摘The uncertainty of time, quantity and quality of recycling products leads to the bad stability and flexibility of remanufacturing logistics networks, while general design only covers the minimizing logistics cost, so robust design is presented to solve it. The mathematical model of remanufacturing logistics networks is built on the stochastic distribution of uncontrollable factors, and robust objectives are presented. The basic elements of robust design of remanufacturing logistics are redefined, and each part of mathematical model is explained in detail as well. Robust design of remanufacturing logistics networks is a problem of multi-objective optimization in essence.
基金Project(2011ZK2030)supported by the Soft Science Research Plan of Hunan Province,ChinaProject(2010ZDB42)supported by the Social Science Foundation of Hunan Province,China+1 种基金Projects(09A048,11B070)supported by the Science Research Foundation of Education Bureau of Hunan Province,ChinaProjects(2010GK3036,2011FJ6049)supported by the Science and Technology Plan of Hunan Province,China
文摘As the huge computation and easily trapped local optimum in remanufacturing closed-loop supply chain network (RCSCN) design considered, a genetic particle swarm optimization algorithm was proposed. The total cost of closed-loop supply chain was selected as fitness function, and a unique and tidy coding mode was adopted in the proposed algorithm. Then, some mutation and crossover operators were introduced to achieve discrete optimization of RCSCN structure. The simulation results show that the proposed algorithm can gain global optimal solution with good convergent performance and rapidity. The computing speed is only 22.16 s, which is shorter than those of the other optimization algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.72271029,72061127001,and 72201121)the National Key Research and Development Program of China(Grant No.2018AAA0101602)DongguanI nInovative ResearchTeam Program(Grant No.2018607202007).
文摘Logistics networks (LNs) are essential for the transportation and distribution of goods or services from suppliers to consumers. However, LNs with complex structures are more vulnerable to disruptions due to natural disasters and accidents. To address the LN post-disruption response strategy optimization problem, this study proposes a novel two-stage stochastic programming model with robust delivery time constraints. The proposed model jointly optimizes the new-line-opening and rerouting decisions in the face of uncertain transport demands and transportation times. To enhance the robustness of the response strategy obtained, the conditional value at risk (CVaR) criterion is utilized to reduce the operational risk, and robust constraints based on the scenario-based uncertainty sets are proposed to guarantee the delivery time requirement. An equivalent tractable mixed-integer linear programming reformulation is further derived by linearizing the CVaR objective function and dualizing the infinite number of robust constraints into finite ones. A case study based on the practical operations of the JD LN is conducted to validate the practical significance of the proposed model. A comparison with the rerouting strategy and two benchmark models demonstrates the superiority of the proposed model in terms of operational cost, delivery time, and loading rate.