期刊文献+
共找到566篇文章
< 1 2 29 >
每页显示 20 50 100
Exploring the medicinal heritage: traditional applications of vertebrates and their by-products in human and veterinary remedies in India
1
作者 Manuhar Sharma Kushal Thakur +5 位作者 Sunil Kumar Rakesh Kumar Danish Mahajan Bhavna Brar Dixit Sharma Amit Kumar Sharma 《Life Research》 2023年第3期25-34,共10页
Indigenous peoples are the custodians of traditional knowledge,encompassing their ideas,innovations,and methods.Throughout history,both plants and animals have served as valuable sources for medicinal remedies,capable... Indigenous peoples are the custodians of traditional knowledge,encompassing their ideas,innovations,and methods.Throughout history,both plants and animals have served as valuable sources for medicinal remedies,capable of treating or preventing illnesses.This article aims to offer a concise overview of the traditional medical uses of vertebrates and the derived products in both human and veterinary medicine.Animal species are utilized as raw materials,and the resulting products are employed to cure a wide array of ailments.In different regions of India,indigenous peoples have diverse traditional applications for vertebrates and their by-products,which are utilized to treat human and animal illnesses.In various parts of India,medical practices involve the use of forty percent mammals,seven percent birds,eleven percent reptiles,eight percent fish,and two percent amphibians.Kerala employs around 69 different animal species and their by-products for the treatment of human and veterinary ailments.Similarly,the Theni district of Tamil Nadu utilizes 69 animals,the state of Madhya Pradesh employs 18 animals,the state of Tripura utilizes 25 animals,and the state of Assam employs 44 animals for the treatment of human and veterinary illnesses.Consequently,the main objective of this review is to provide a summary of the traditional therapeutic applications of animals and the resulting products. 展开更多
关键词 Traditional knowledge zootherapy natural remedies FISHES birds and mammals
下载PDF
3D-Printed MOF Monoliths:Fabrication Strategies and Environmental Applications
2
作者 Hossein Molavi Kamyar Mirzaei +4 位作者 Mahdi Barjasteh Seyed Yahya Rahnamaee Somayeh Saeedi Aliakbar Hassanpouryouzband Mashallah Rezakazemi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期358-405,共48页
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora... Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths. 展开更多
关键词 MOFS 3D-printing Environmental remediation SHAPING MONOLITHS
下载PDF
Malargüe Site Remediation:A Successful Solution for Uranium Mill Tailings
3
作者 BARARI E DíAZ J G +1 位作者 GIOMIA KEMPF R A 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2088-2094,共7页
Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with ... Comisión Nacional de Energía Atómica (CNEA) has the responsibility for restoring uranium mining facilities once the operations have finished.CNEA,within its Environmental Program and in compliance with its legal responsibilities,decides to implement a restoration project for all sites related to the mining and processing of uranium ores.The Malargüe Site is located within the Province of Mendoza in the city of Malargüe.It is the first site to successfully complete its remediation.The activities consist of relocation of tailings to an engineering repository.The tailings management(encapsulation) and rehabilitation of the area was finished in June 2017.The remediation alternative for the ore tailings was selected after conducting comparative studies and submitted the project to the society for consideration.The objective of the encapsulation of the mineral tails is to isolate them from the environment,also proceeding with the decontamination and rehabilitation of the area (landscaping,post-closure monitoring and 20 years monitoring period).Encapsulation consisted of the construction of a containment cell for the mine tailings,to isolate them and prevent pollutants from entering the environment through the transfer routes.To clean the impacted areas,the soil was removed,it was incorporated into the encapsulation,and the filling was carried out with natural soils from the area.Remediation prevents radon transfer to the environment,as ^(222)Ra is an alpha emitter with a half-life of four days,which produces its own radioactive progeny.Radon progeny are solids,and when a ^(222)Ra nucleus emits an alpha particle into the air,the resulting ^(218)Po nucleus,momentarily electrically charged,adheres to any dust particle.Remediation prevents the discharge into the air containing radon and also containing dust particles charged with intensely radioactive radon progeny.The tasks mentioned make it possible to decrease radon emanation,reduce radiological risks to the public and prevent the entry of rainwater into the system.In addition,the containment system prevents the discharge of contaminated liquids into the environment,avoiding contamination of the groundwater.All these activities are according to the concepts of sustainability. 展开更多
关键词 REMEDIATION radionuclide transfer TAILINGS ENCAPSULATION SOLUTION sustainable
下载PDF
Recent advances in core-shell organic framework-based photocatalysts for energy conversion and environmental remediation
4
作者 Qibing Dong Ximing Li +9 位作者 Yanyan Duan Qingyun Tian Xinxin Liang Yiyin Zhu Lin Tian Junjun Wang Atif Sial Yongqian Cui Ke Zhao Chuanyi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期168-199,I0004,共33页
Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materi... Direct conversion of solar energy into chemical energy in an environmentally friendly manner is one of the most promising strategies to deal with the environmental pollution and energy crisis.Among a variety of materials developed as photocatalysts,the core-shell metal/covalent-organic framework(MOF or COF)photocatalysts have garnered significant attention due to their highly porous structure and the adjustability in both structure and functionality.The existing reviews on core-shell organic framework photocatalytic materials have mainly focused on core-shell MOF materials.However,there is still a lack of indepth reviews specifically addressing the photocatalytic performance of core-shell COFs and MOFs@COFs.Simultaneously,there is an urgent need for a comprehensive review encompassing these three types of core-shell structures.Based on this,this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable core-shell organic framework photocatalysts towards appropriate photocatalytic energy conversion and environmental governance.Firstly,the classification,synthesis,formation mechanisms,and reasonable regulation of core-shell organic framework were summarized.Then,the photocatalytic applications of these three kinds of core-shell structures in different areas,such as H_(2)evolution,CO_(2)reduction,and pollutants degradation are emphasized.Finally,the main challenges and development prospects of core-shell organic framework photocatalysts were introduced.This review aims to provide insights into the development of a novel generation of efficient and stable core-shell organic framework materials for energy conversion and environmental remediation. 展开更多
关键词 Organic framework Core-shell structure PHOTOCATALYSIS Energy conversion Environmental remediation
下载PDF
Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag
5
作者 Zihang Yan Qing Zhao +3 位作者 Chengzhi Han Xiaohui Mei Chengjun Liu Maofa Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期292-300,共9页
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen... Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%. 展开更多
关键词 stainless steel slag SPINEL CHROMIUM waste remediation ferrous oxide
下载PDF
Micro-nano-fabrication of green functional materials by multiphase microfluidics for environmental and energy applications
6
作者 Cheng Qi Tao Zhou +6 位作者 Xingjiang Wu Kailang Liu Lei Li Zhou Liu Zhuo Chen Jianhong Xu Tiantian Kong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1199-1219,共21页
Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of... Multiphase microfluidic has emerged as a powerful platform to produce novel materials with tailor-designed functionalities,as microfluidic fabrication provides precise controls over the size,component,and structure of resultant materials.Recently,functional materials with well-defined micro-/nanostructures fabricated by microfluidics find important applications as environmental and energy materials.This review first illustrated in detail how different structures or shapes of droplet and jet templates are formed by typical configurations of microfluidic channel networks and multiphase flow systems.Subsequently,recent progresses on several representative energy and environmental applications,such as water purification,water collecting and energy storage,were overviewed.Finally,it is envisioned that integrating microfluidics and other novel materials will play increasing important role in contributing environmental remediation and energy storage in near future. 展开更多
关键词 MICROFLUIDICS Multi-phase flow Droplet and microfiber Environmental remediation Energy Storage
下载PDF
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage
7
作者 Angana Mahanta Debashis Sarmah +6 位作者 Nilotpol Bhuyan Monikankana Saikia Sarat Phukan K.S.V.Subramanyam Ajit Singh Prasenjit Saikia Binoy K.Saikia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期133-147,共15页
Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drain... Opencast coal mining produces trash of soil and rock containing various minerals,that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage(AMD)through oxidation pyrite minerals.The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India.In order to have a comprehensive overview of the AMD problem in Makum coalfield,the physico-chemical,geochemical,and petrological characteristics of the coal and overburden(OB)samples collected from the Makum coalfield(Northeast India)were thoroughly investigated.The maceral compositions reveal that coal features all three groups of macerals(liptinite,vitrinite,and inertinite),with a high concentration of liptinite indicating the coal of perhydrous,thereby rendering it more reactive.Pyrite(FeS_(2))oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and(OB)samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods,and to replicate the actual mine site leaching.Inductively coupled plasma-optical emission spectroscopy(ICP-OES)was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment.The Rare earth element(REE)enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB.These experiments reveal the change in conductivity,acid producing tendency,total dissolved solid(TDS),total Iron(Fe)and dissolved Sulfate(SO_(4)^(2−))ions on progress of the leaching experiments.Moreover,the discharge of FeS_(2) via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics.A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station.Apart from neutralisation of AMD water,this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water. 展开更多
关键词 Opencast mining Pyrite oxidation Coal geochemistry Coal petrology Rare earth elements AMD remediation
下载PDF
Self-adaptive gas flow and phase change behaviors during hydrate exploitation by alternate injection of N_(2) and CO_(2)
8
作者 Bo-Jian Cao Yi-Fei Sun +5 位作者 Hong-Nan Chen Jin-Rong Zhong Ming-Long Wang Ming Wang Chang-Yu Sun Guang-Jin Chen 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期2120-2129,共10页
Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed ... Since hydrate resources play a part of the stratigraphic framework structure in sediments,establishing a safe and economic method for hydrates exploitation remains the primary challenge to this day.Among the proposed methods,the spontaneous displacement of CH_(4) from hydrate cages by CO_(2) seems to be a perfect mechanism to address gas production and CO_(2) storage,especially in today's strong demand for carbon reduction and replacing clean energy.After extensive lab researches,in the past decade,injecting a mixture of CO_(2) and small molecule gas has become a key means to enhance displacement efficiency and has great potential for application.However,there is a lack of in-depth research on gas flow in the reservoir,while the injected gas always passes through low-saturated hydrate areas with high permeability and then occurs gas channel in a short term,finally resulting in the decreases in gas production efficiency and produced gas quality.Therefore,we explored a new injection-production mode of alternate injection of N2 and CO_(2) in order to fully coordinate the advantages of N_(2) in enhanced hydrate decomposition and CO_(2) in solid storage and heat compensation.These alternate"taking"and"storing"processes perfectly repair the problem of the gas channel,achieving self-regulation effect of CH_(4) recovery and CO_(2) storage.The 3-D experimental results show that compared to the mixed gas injection,CH_(4) recovery is increased by>50%and CO_(2) storage is increased by>70%.Additionally,this alternate injection mode presented a better performance in CH_(4) concentration of produced gas and showed outstanding N_(2) utilization efficiency.Further,we analyzed its self-adaptive gas flow mechanism and proposed an application model of"one injection and multiple production".We look forward to this study accelerating the application of CO_(2)-CH_(4) replacement technology. 展开更多
关键词 HYDRATE Replacement CH_(4)recovery CO_(2)storage Reservoir remediation
下载PDF
Enhanced gas production and CO_(2) storage in hydrate-bearing sediments via pre-depressurization and rapid CO_(2) injection
9
作者 Hongnan Chen Yifei Sun +5 位作者 Bojian Cao Minglong Wang Ming Wang Jinrong Zhong Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期126-134,共9页
Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t... Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate. 展开更多
关键词 HYDRATE DEPRESSURIZATION CO_(2) storage CH_(4) production Reservoir remediation
下载PDF
Pollution source identification methods and remediation technologies of groundwater: A review
10
作者 Ya-ci Liu Yu-hong Fei +2 位作者 Ya-song Li Xi-lin Bao Peng-wei Zhang 《China Geology》 CAS CSCD 2024年第1期125-137,共13页
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi... Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies. 展开更多
关键词 Groundwater pollution Identification of pollution sources Geophysical exploration identification Geochemistry identification Isotopic tracing Numerical modeling Remediation technology Hydrogeological conditions Hydrogeological survey engineering
下载PDF
Effect of salinization on soil properties and mechanisms beneficial to microorganisms in salinized soil remediation-a review
11
作者 Jing Pan Xian Xue +6 位作者 CuiHua Huang QuanGang You PingLin Guo RuiQi Yang FuWen Da ZhenWei Duan Fei Peng 《Research in Cold and Arid Regions》 CSCD 2024年第3期121-128,共8页
Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead... Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil. 展开更多
关键词 Salinized soil Microbial remediation Halophilic and halotolerant microorganisms Soil properties
下载PDF
Addressing Japan’s disposal of nuclear-contaminated water from the perspective of international human rights law
12
作者 Yen-Chiang Chang Xiaonan Zhao 《Chinese Journal of Population,Resources and Environment》 2024年第1期1-9,共9页
The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually ente... The discharge of nuclear-contaminated water containing radionuclides into the ocean by Japan will lead to its integration into the entire ecosystem through processes of circulation and biomagnification,eventually entering the human body via the food chain.This poses a substantial risk of irreversible damage to both the ecosystem and human health,a situation that will worsen with the ongoing discharge of such water.The respect and protection of human rights represent an international consensus,and safeguarding fundamental human rights is a substantial obligation that states must undertake in accordance with both international and domestic law.Since the Fukushima nuclear disaster,Japan has continuously violated its international legal obligations to protect human rights in several areas,including the resettlement of disaster victims,the reduction of nuclear radiation levels,and the handling of contaminated water.Such actions have compromised and will continue to compromise the basic human rights of not only its citizens but also those of people worldwide,including environmental rights,the right to life,development rights,and food rights.In the aftermath of the Fukushima meltdown,the public and workers involved in handling nuclear contaminants have been continually exposed to high radiation levels,endangering their rights to life,development,and health.Japan’s inadequate efforts in victim resettlement and environmental restoration have jeopardized the environmental and food rights of its citizens to live healthily and access food in an environment unaffected by nuclear radiation.The release of nuclear-contaminated water poses a risk of Japan’s nuclear pollution to the people of neighboring countries and the global population at large.The principle of human rights underpins the theory of a community with a shared future for humanity,and human rights are a crucial area of China’s active participation in United Nations affairs and global governance.By voicing concerns over Japan’s potential human rights violations globally,China demonstrates its role as a responsible major country.In response to Japan’s breach of legal obligations and human rights violations,China can adopt a reasoned and beneficial approach,including calling on the international community to hold Japan criminally accountable for crimes against humanity under the Rome Statute and advancing scholarly discussions on ecocide and crimes against the marine environment.Furthermore,China should persist in seeking advisory opinions from the International Court of Justice and strive for substantive accountability,utilizing the mechanisms of international human rights organizations to make its voice heard. 展开更多
关键词 Fukushima nuclearcontaminated water Crimes against humanity Remedy for violations of human rights Right to environment Right to life
下载PDF
Technique of Earthworms Restoring Soil in Greenhouse Cultivation
13
作者 Yanjiao LI Jiafei SU +7 位作者 Zhiu ZHANG Guang QI Jianhua CHEN Lixuan KOU Limin WANG Wenxian LIU Junyi ZHANG Libing QIU 《Asian Agricultural Research》 2024年第1期40-43,共4页
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon... The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation. 展开更多
关键词 Earthworms Greenhouse cultivation Soil remediation Biological agent
下载PDF
Research Progress on Effects of Continuous Cropping on Soil Microbial Florae and Its Restoration
14
作者 Zaixiang ZHU Zebin CHEN +5 位作者 Shengguang XU Zhiwei FAN Li LIN Tianfang WANG Qingmei LI Yue YAN 《Agricultural Biotechnology》 2024年第2期75-80,共6页
Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potent... Continuous cropping has become a common form of agricultural production at present, but with the increase of continuous cropping years, continuous cropping obstacles such as soil-borne diseases and plant growth potential decline are becoming more and more common. At present, the causes of continuous cropping obstacles and continuous cropping restoration have become a hot issue in agricultural research. This paper summarized the effects of continuous cropping obstacles on soil microbial community structure and main technical methods to repair continuous cropping obstacles, such as agricultural measure management, microbial balance adjustment and soil improvement, aiming to provide theoretical reference for protecting the sustainable utilization of soil ecosystem and ensuring the stability of crop production. 展开更多
关键词 Continuous cropping obstacle Rhizosphere soil MICROORGANISM Soil remediation Soil improvement
下载PDF
Feasibility Evaluation of Using Biochar-based Permeable Reactive Barrier for the Remediation of Mercury and Arsenic Composite Polluted Water Bodies
15
作者 Dilixiati·Abulizi 《Asian Agricultural Research》 2024年第5期15-19,共5页
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition... This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency. 展开更多
关键词 BIOCHAR Goethite-modified biochar Permeable reactive barrier(PRB) Mercury and arsenic pollution Remediation efficiency
下载PDF
Comparison and Selection of Water Restoration Techniques for Artificial Landscape Lakes in Nantong City
16
作者 Shengrong YAN Yuyue MA +2 位作者 Yi'an CHEN Jiafeng SUN Mingqing CHEN 《Agricultural Biotechnology》 2024年第3期90-92,95,共4页
As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable... As an important part of urban infrastructure,urban water system is of great and far-reaching significance for ensuring urban flood control and waterlogging safety,protecting ecological environment and building livable homes.Taking the urban water system of Nantong as an example,Nantong Water Resources Bureau issued R evision of Nantong Urban Water System Planning in 2017,and put forward the construction of the"two circles,eight lakes and nine veins"water system layout,giving new vitality to the urban water system.In view of problems existing in newly excavated artificial landscape lakes,such as fragile water ecosystem,strong eutrophication trend,poor environmental sensory effect and unsatisfactory water landscape effect,it is urgent to study the in-situ water ecological restoration technique of"algae-controlling zooplankton+submerged plant community"to build a"grass-type clear water"ecosystem for artificial landscape lakes,so as to improve the water sensory index and self-purification ability and finally realize the double improvement of"sensory effect and water quality"of artificial landscape lakes. 展开更多
关键词 Water body remediation technique Artificial landscape lake Comparison and selection Nantong City
下载PDF
Ecological Remediation Technology of Urban Landscape Water Body
17
作者 SUN Xiangxuan XIONG Qingqing XIAO Shizhen 《Journal of Landscape Research》 2024年第1期55-58,共4页
Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents fo... Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment. 展开更多
关键词 Urban landscape water body Water body treatment Ecological remediation
下载PDF
Effects of Phytoremediation on Soil Contaminated with Pb and Cd in Tolerant Bacterial Populations
18
作者 Alejandra Vásquez María Montes +3 位作者 Melissa Cervantes María Alvarado Pedro García Victor Aguilar 《Journal of Environmental Science and Engineering(A)》 CAS 2024年第4期122-127,共6页
Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediatio... Bacterial populations isolated from treated soil,artificially contaminated with lead(Pb)and cadmium(Cd)and undergoing a phytoremediation process were studied to determine their potential application in soil remediation.The physicochemical parameters evaluated in the soil varied significantly.Ten bacterial strains were selected from each polluted soil to test tolerance and growth in contaminated media.The concentrations of heavy metals tested were 1,000 ppm for lead and 850 ppm for cadmium.These strains were morphologically identified through Gram staining.Four strains showing the most significant growth in both contaminants were then selected to verify their tolerance to different concentrations of heavy metals.The results demonstrated that the selected bacteria have high tolerance to Pb,resisting inhibition up to 2,000 ppm.In contrast,strains exposed to cadmium tended to slow their growth as the concentration increased. 展开更多
关键词 Lead CADMIUM soil BACTERIA REMEDIATION
下载PDF
Comparative Study of the Efficacy of Metal Removal from Contaminated Aqueous Solutions by Solid Bidentate Ligands&Liquid Plant Materials
19
作者 Lovell Agwaramgbo Talajai Sardin Christopher Alisa 《Journal of Environmental Science and Engineering(A)》 CAS 2024年第2期45-49,共5页
Heavy metal contaminated water sources pose serious health risks for humans,animals,and plants.Exposure to and ingestion of heavy metals have been associated to liver,kidney,and brain function.Objective:The aim of thi... Heavy metal contaminated water sources pose serious health risks for humans,animals,and plants.Exposure to and ingestion of heavy metals have been associated to liver,kidney,and brain function.Objective:The aim of this research is to comparatively examine the metal removal efficacy of three solid bidentate chemicals and four plant materials.Study Design&Methods:Standard solutions of zinc(II)and lead(II)ions with concentrations of 1,000 ppm were respectively treated with OA(Oxalic Acid),dibasic bidentate ligands(sodium hydrogen phosphate and sodium carbonate).Then,the solutions were placed on a shaker for 15 h,centrifuged,and the supernatant was analyzed using ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry).Results:All the solid bidentate adsorbents were very effective in removing zinc and lead(>90%).However,more lead than zinc was removed across all adsorbents except for lemon where equal percent of zinc and lead(49%)were removed.OA and Na2HPO4 removed about equal amount of lead(>99%).The plant materials(SP(Spinach),bell pepper and GBP(Green Bell Pepper)),respectively and preferentially removed more lead(98.9%,98.3%,81.5%)than zinc(91.7%,46%,46%).Conclusion:Although plant materials have gained attraction for the remediation of heavy metal,however,some bidentate chemical ligands such as OA,sodium carbonate and sodium hydrogen phosphates are even more effective in removing these metals from contaminated water.Furthermore,heavier metals are preferentially removed than lighter metals. 展开更多
关键词 Organic acids OA REMEDIATION CHELATION LIGANDS heavy metal contamination
下载PDF
Adsorption of Phenanthrene in Soil to Biochar Modified by β-Cyclodextrin
20
作者 Wanke Chen Qing Guo +3 位作者 Xiaoyan Wang Xiao Wang Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第9期44-54,共11页
In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strate... In this study, the adsorption effect of β-cyclodextrin modified biochar (BC) on phenanthrene (PHE) in contaminated soil was investigated, aiming to provide an efficient and environmentally friendly remediation strategy for Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil. Through kinetic and isotherm analysis, β-CDBC-CA showed excellent phenanthrene adsorption performance, and the adsorption effect increased with the increase of time and was affected by temperature. The results show that β-CDBC-CA can not only effectively adsorb phenanthrene in soil, but also serve as a surfactant to help desorption phenanthrene adsorbed by soil organic matter and improve the efficiency of microbial degradation. The experimental data showed that the Elovich model could describe the adsorption behavior of β-CDBC-CA on phenanthrene well, while Langmuir and Freundlich models performed better in fitting parameters, revealing the adsorption mechanism of phenanthrene in contaminated soil by β-cyclodextrin-modified biochar. In addition, temperature has a significant effect on the adsorption capacity of β-CDBC-CA, and its application in soil remediation can be optimized by adjusting temperature. This study not only provides new materials and technical means for soil remediation but also provides important data support for an in-depth understanding of the environmental behavior of PAHs. By citing relevant research results, this study further improves the control and understanding of environmental risks of PAHs, which is of great significance for the protection of ecological environment and human health. 展开更多
关键词 PAHS BIOCHAR Β-CYCLODEXTRIN MODIFICATION ADSORPTION Soil Remediation
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部