为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离...为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。展开更多
文摘为利用非共沸工质在蒸发器内“温度滑移”的优势,避免在冷凝器内“组分迁移”的不利影响。构建了非共沸工质分离压缩再混合有机朗肯循环系统(ORC with separation,compression,and remixing,SCRM-ORC)。采用分凝器将非共沸混合工质分离成2种纯工质,分别进入气液热交换器两空间进行气液换热,再对纯工质压缩、混合再利用。以120℃地热水为热源,R134a/R245fa为工质,建立热力、经济与环境性能模型,分析R134a质量分数对系统综合性能的影响,并与采用R134a的乏气压缩再循环ORC系统(compression recycling,CR-ORC)性能进行对比。采用遗传算法进行多目标优化,揭示系统最优性能与工况参数。结果表明:与CR-ORC系统相比,非共沸工质SCRM-ORC系统可有效降低冷凝热的释放量,在R134a质量分数较低时提高冷凝热回收利用量,同时具有较好的综合性能。将分凝器与气液热交换器看作整体与CR-ORC系统中新型冷凝器相比,二者[火用]损失之和与投资成本之和小于CR-ORC系统中冷凝器的。在R134a质量分数为0.2181时,系统综合性能最优,此时净输出功为3412.1kW,投资回收期为2.237年,年当量CO_(2)减排量为4520.6×10^(3)kg。