The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless...The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.展开更多
基金This work is supported by the National Natural Science Foundation of China (Nos. 10832012, 10872061 and 10972090) and Scientific Advancing Front and Interdiscipline Innovation Project of Jilin University (No. 200903169).
文摘The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.