The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has ...The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.展开更多
There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters ...There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.展开更多
With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decision...With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.展开更多
Water on the Earth’s surface is an essential part of the hydrological cycle. Water resources include surface waters, groundwater, lakes, inland waters, rivers, coastal waters, and aquifers. Monitoring lake dynamics i...Water on the Earth’s surface is an essential part of the hydrological cycle. Water resources include surface waters, groundwater, lakes, inland waters, rivers, coastal waters, and aquifers. Monitoring lake dynamics is critical to favor sustainable management of water resources on Earth. In cryosphere, lake ice cover is a robust indicator of local climate variability and change. Therefore, it is necessary to review recent methods, technologies, and satellite sensors employed for the extraction of lakes from satellite imagery. The present review focuses on the comprehensive evaluation of existing methods for extraction of lake or water body features from remotely sensed optical data. We summarize pixel-based, object-based, hybrid, spectral index based, target and spectral matching methods employed in extracting lake features in urban and cryospheric environments. To our knowledge, almost all of the published research studies on the extraction of surface lakes in cryospheric environments have essentially used satellite remote sensing data and geospatial methods. Satellite sensors of varying spatial, temporal and spectral resolutions have been used to extract and analyze the information regarding surface water. Multispectral remote sensing has been widely utilized in cryospheric studies and has employed a variety of electro-optical satellite sensor systems for characterization and extraction of various cryospheric features, such as glaciers, sea ice, lakes and rivers, the extent of snow and ice, and icebergs. It is apparent that the most common methods for extracting water bodies use single band-based threshold methods, spectral index ratio (SIR)-based multiband methods, image segmentation methods, spectral-matching methods, and target detection methods (unsupervised, supervised and hybrid). A Synergetic fusion of various remote sensing methods is also proposed to improve water information extraction accuracies. The methods developed so far are not generic rather they are specific to either the location or satellite imagery or to the type of the feature to be extracted. Lots of factors are responsible for leading to inaccurate results of lake-feature extraction in cryospheric regions, e.g. the mountain shadow which also appears as a dark pixel is often misclassified as an open lake. The methods which are working well in the cryospheric environment for feature extraction or landcover classification does not really guarantee that they will be working in the same manner for the urban environment. Thus, in coming years, it is expected that much of the work will be done on object-based approach or hybrid approach involving both pixel as well as object-based technology. A more accurate, versatile and robust method is necessary to be developed that would work independent of geographical location (for both urban and cryosphere) and type of optical sensor.展开更多
文摘The automatic registration of multi-source remote sensing images (RSI) is a research hotspot of remote sensing image preprocessing currently. A special automatic image registration module named the Image Autosync has been embedded into the ERDAS IMAGINE software of version 9.0 and above. The registration accuracies of the module verified for the remote sensing images obtained from different platforms or their different spatial resolution. Four tested registration experiments are discussed in this article to analyze the accuracy differences based on the remote sensing data which have different spatial resolution. The impact factors inducing the differences of registration accuracy are also analyzed.
基金Key research project "Research of Shanghai City and Costal Heavy Fog Remote Sensing Detecting and Warning System" of Science and Technology Commission of Shanghai Municipality (075115011)
文摘There is an urgent need for the development of a method that can undertake rapid, effective, and accurate monitoring and identification of fog by satellite remote sensing, since heavy fog can cause enormous disasters to China’s national economy and people's lives and property in the urban and coastal areas. In this paper, the correlative relationship between the reflectivity of land surface and clouds in different time phases is found, based on the analysis of the radiative and satellite-based spectral characteristics of fog. Through calculation and analyses of the relative variability of the reflectivity in the images, the threshold to identify quasi-fog areas is generated automatically. Furthermore, using the technique of quick image run-length encoding, and in combination with such practical methods as analyzing texture and shape fractures, smoothness, and template characteristics, the automatic identification of fog and fog-cloud separation using meteorological satellite remote sensing images are studied, with good results in application.
基金supported by the National Program on Key Basic Research Project (No. 2014CB744903)the National Natural Science Foundation of China(Nos. 61973212,61673270)+3 种基金the Shanghai Industrial Strengthening Project (No. GYQJ-2017-5-08)the Shanghai Science and Technology Committee Research Project (No. 17DZ1204304)the Civil Aviation Pre-Research ProjectsShanghai Engineering Research Center of Civil Aircraft Flight Testing.
文摘With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.
文摘Water on the Earth’s surface is an essential part of the hydrological cycle. Water resources include surface waters, groundwater, lakes, inland waters, rivers, coastal waters, and aquifers. Monitoring lake dynamics is critical to favor sustainable management of water resources on Earth. In cryosphere, lake ice cover is a robust indicator of local climate variability and change. Therefore, it is necessary to review recent methods, technologies, and satellite sensors employed for the extraction of lakes from satellite imagery. The present review focuses on the comprehensive evaluation of existing methods for extraction of lake or water body features from remotely sensed optical data. We summarize pixel-based, object-based, hybrid, spectral index based, target and spectral matching methods employed in extracting lake features in urban and cryospheric environments. To our knowledge, almost all of the published research studies on the extraction of surface lakes in cryospheric environments have essentially used satellite remote sensing data and geospatial methods. Satellite sensors of varying spatial, temporal and spectral resolutions have been used to extract and analyze the information regarding surface water. Multispectral remote sensing has been widely utilized in cryospheric studies and has employed a variety of electro-optical satellite sensor systems for characterization and extraction of various cryospheric features, such as glaciers, sea ice, lakes and rivers, the extent of snow and ice, and icebergs. It is apparent that the most common methods for extracting water bodies use single band-based threshold methods, spectral index ratio (SIR)-based multiband methods, image segmentation methods, spectral-matching methods, and target detection methods (unsupervised, supervised and hybrid). A Synergetic fusion of various remote sensing methods is also proposed to improve water information extraction accuracies. The methods developed so far are not generic rather they are specific to either the location or satellite imagery or to the type of the feature to be extracted. Lots of factors are responsible for leading to inaccurate results of lake-feature extraction in cryospheric regions, e.g. the mountain shadow which also appears as a dark pixel is often misclassified as an open lake. The methods which are working well in the cryospheric environment for feature extraction or landcover classification does not really guarantee that they will be working in the same manner for the urban environment. Thus, in coming years, it is expected that much of the work will be done on object-based approach or hybrid approach involving both pixel as well as object-based technology. A more accurate, versatile and robust method is necessary to be developed that would work independent of geographical location (for both urban and cryosphere) and type of optical sensor.