基于前列腺癌患者截石位粒子植入手术的可操作空间,提出前列腺癌粒子植入机器人的设计要求;将机器人分为位置调整模块、姿态调整模块、末端植入器3个组成部分.通过杆件尺寸设计实现3自由度位置调整机构的运动解耦,计算其工作空间可满足...基于前列腺癌患者截石位粒子植入手术的可操作空间,提出前列腺癌粒子植入机器人的设计要求;将机器人分为位置调整模块、姿态调整模块、末端植入器3个组成部分.通过杆件尺寸设计实现3自由度位置调整机构的运动解耦,计算其工作空间可满足临床需求;姿态调整模块采用远程运动中心(remote center of motion,RCM)机构,引入平行四边形机构解决运动死点问题;末端植入器采用齿轮齿条机构驱动外针,硬质摩擦槽轮驱动内针,通过弹簧压紧机构提供稳定压紧力并设计大容量粒子弹夹.最后,利用ADAMS进行运动学分析,验证数值计算的准确性;动力学分析验证前列腺癌粒子植入机器人设计的合理可行.展开更多
This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutane...This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.展开更多
文摘基于前列腺癌患者截石位粒子植入手术的可操作空间,提出前列腺癌粒子植入机器人的设计要求;将机器人分为位置调整模块、姿态调整模块、末端植入器3个组成部分.通过杆件尺寸设计实现3自由度位置调整机构的运动解耦,计算其工作空间可满足临床需求;姿态调整模块采用远程运动中心(remote center of motion,RCM)机构,引入平行四边形机构解决运动死点问题;末端植入器采用齿轮齿条机构驱动外针,硬质摩擦槽轮驱动内针,通过弹簧压紧机构提供稳定压紧力并设计大容量粒子弹夹.最后,利用ADAMS进行运动学分析,验证数值计算的准确性;动力学分析验证前列腺癌粒子植入机器人设计的合理可行.
文摘This paper presents an automatic compensation algorithm for needle tip displacement in order to keep the needle tip always fixed at the skin entry point in the process of needle orientation in robot-assisted percutaneous surgery. The algorithm, based on a two-degree-of-freedom (2-DOF) robot wrist (not the mechanically constrained remote center of motion (RCM) mechanism) and a 3-DOF robot ann, firstly calculates the needle tip displacement caused by rotational motion of robot wrist in the arm coordinate frame using the robotic forward kinematics, and then inversely compensates for the needle tip displace- ment by real-time Cartesian motion of robot arm. The algorithm achieves the function of the RCM and eliminates many mechanical and virtual constraints caused by the RCM mechanism. Experimental result demonstrates that the needle tip displacement is within 1 inm in the process of needle orientation.