Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such a...Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features.This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images(ODLTCP-HRRSI)to resolve these issues.The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities.To attain this,the presented ODLTCP-HRRSI model performs two major processes.At the initial stage,the ODLTCP-HRRSI technique employs a convolutional neural network with an auto-encoder(CNN-AE)model for productive and accurate traffic flow.Next,the hyperparameter adjustment of the CNN-AE model is performed via the Bayesian adaptive direct search optimization(BADSO)algorithm.The experimental outcomes demonstrate the enhanced performance of the ODLTCP-HRRSI technique over recent approaches with maximum accuracy of 98.23%.展开更多
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu...The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.展开更多
This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest reso...This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.展开更多
To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image applicat...To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectiv...The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.展开更多
In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a visi...In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.展开更多
To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of ...To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.展开更多
Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods fo...Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.展开更多
Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches ...Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches develop,techniques for RSI classifiers with DL have attained important breakthroughs,providing a new opportunity for the research and development of RSI classifiers.This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification(ISMOGCN-HRSC)model.The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs.In the presented ISMOGCN-HRSC model,the synergic deep learning(SDL)model is exploited to produce feature vectors.The GCN model is utilized for image classification purposes to identify the proper class labels of the RSIs.The ISMO algorithm is used to enhance the classification efficiency of the GCN method,which is derived by integrating chaotic concepts into the SMO algorithm.The experimental assessment of the ISMOGCN-HRSC method is tested using a benchmark dataset.展开更多
A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced t...A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.展开更多
The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from ...The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation e...Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.展开更多
A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancella...A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.展开更多
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing imag...Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing images.Firstly,a pre-trained ResNet34 was migrated to U-Net and its encoding structure was replaced to deepen the number of network layers,which reduces the error rate of road segmentation and the loss of details.Secondly,dilated convolution was used to connect the encoder and the decoder of network to expand the receptive field and retain more low-dimensional information of the image.Afterwards,the channel attention mechanism was used to select the information of the feature image obtained by up-sampling of the encoder,the weights of target features were optimized to enhance the features of target region and suppress the features of background and noise regions,and thus the feature extraction effect of the remote sensing image with complex background was optimized.Finally,an adaptive sigmoid loss function was proposed,which optimizes the imbalance between the road and the background,and makes the model reach the optimal solution.Experimental results show that compared with several semantic segmentation networks,the proposed method can greatly reduce the error rate of road segmentation and effectively improve the accuracy of road extraction from remote sensing images.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
文摘Remote sensing(RS)presents laser scanning measurements,aerial photos,and high-resolution satellite images,which are utilized for extracting a range of traffic-related and road-related features.RS has a weakness,such as traffic fluctuations on small time scales that could distort the accuracy of predicted road and traffic features.This article introduces an Optimal Deep Learning for Traffic Critical Prediction Model on High-Resolution Remote Sensing Images(ODLTCP-HRRSI)to resolve these issues.The presented ODLTCP-HRRSI technique majorly aims to forecast the critical traffic in smart cities.To attain this,the presented ODLTCP-HRRSI model performs two major processes.At the initial stage,the ODLTCP-HRRSI technique employs a convolutional neural network with an auto-encoder(CNN-AE)model for productive and accurate traffic flow.Next,the hyperparameter adjustment of the CNN-AE model is performed via the Bayesian adaptive direct search optimization(BADSO)algorithm.The experimental outcomes demonstrate the enhanced performance of the ODLTCP-HRRSI technique over recent approaches with maximum accuracy of 98.23%.
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金supported by the National Natural Science Foundation of China(Grant Nos.42090054,41931295)the Natural Science Foundation of Hubei Province of China(2022CFA002)。
文摘The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains.
文摘This study was to estabIish the forest resources management information system for forest farms based on the B/S structural WebGIS with trial forest farm of Hunan Academy of Forestry as the research field, forest resources field survey da-ta, ETM+ remote sensing data and basic geographical information data as research material through the extraction of forest resource data in the forest farm, require-ment analysis on the system function and the estabIishment of required software and hardware environment, with the alm to realize the management, query, editing, analysis, statistics and other functions of forest resources information to manage the forest resources.
文摘To retrieve the object region efficaciously from massive remote sensing image database, a model for content-based retrieval of remote sensing image is given according to the characters of remote sensing image application firstly, and then the algorithm adopted for feature extraction and multidimensional indexing, and relevance feedback by this model are analyzed in detail. Finally, the contents intending to be researched about this model are proposed.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金Young Innovative Talents Project of Guangdong Ordinary Universities(No.2022KQNCX225)School-level Teaching and Research Project of Guangzhou City Polytechnic(No.2022xky046)。
文摘The semantic segmentation methods based on CNN have made great progress,but there are still some shortcomings in the application of remote sensing images segmentation,such as the small receptive field can not effectively capture global context.In order to solve this problem,this paper proposes a hybrid model based on ResNet50 and swin transformer to directly capture long-range dependence,which fuses features through Cross Feature Modulation Module(CFMM).Experimental results on two publicly available datasets,Vaihingen and Potsdam,are mIoU of 70.27%and 76.63%,respectively.Thus,CFM-UNet can maintain a high segmentation performance compared with other competitive networks.
基金supported by the National Natural Science Foundation of China (61702528,61806212)。
文摘In the field of satellite imagery, remote sensing image captioning(RSIC) is a hot topic with the challenge of overfitting and difficulty of image and text alignment. To address these issues, this paper proposes a vision-language aligning paradigm for RSIC to jointly represent vision and language. First, a new RSIC dataset DIOR-Captions is built for augmenting object detection in optical remote(DIOR) sensing images dataset with manually annotated Chinese and English contents. Second, a Vision-Language aligning model with Cross-modal Attention(VLCA) is presented to generate accurate and abundant bilingual descriptions for remote sensing images. Third, a crossmodal learning network is introduced to address the problem of visual-lingual alignment. Notably, VLCA is also applied to end-toend Chinese captions generation by using the pre-training language model of Chinese. The experiments are carried out with various baselines to validate VLCA on the proposed dataset. The results demonstrate that the proposed algorithm is more descriptive and informative than existing algorithms in producing captions.
基金This research was funded in part by the Natural Science Foundation of Jiangsu Province under Grant BK 20211333by the Science and Technology Project of Changzhou City(CE20215032).
文摘To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.
基金funded by the Major Scientific and Technological Innovation Project of Shandong Province,Grant No.2022CXGC010609.
文摘Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation.With the continuous develop-ment of artificial intelligence technology,the use of deep learning methods for interpreting remote-sensing images has matured.Existing neural networks disregard the spatial relationship between two targets in remote sensing images.Semantic segmentation models that combine convolutional neural networks(CNNs)and graph convolutional neural networks(GCNs)cause a lack of feature boundaries,which leads to the unsatisfactory segmentation of various target feature boundaries.In this paper,we propose a new semantic segmentation model for remote sensing images(called DGCN hereinafter),which combines deep semantic segmentation networks(DSSN)and GCNs.In the GCN module,a loss function for boundary information is employed to optimize the learning of spatial relationship features between the target features and their relationships.A hierarchical fusion method is utilized for feature fusion and classification to optimize the spatial relationship informa-tion in the original feature information.Extensive experiments on ISPRS 2D and DeepGlobe semantic segmentation datasets show that compared with the existing semantic segmentation models of remote sensing images,the DGCN significantly optimizes the segmentation effect of feature boundaries,effectively reduces the noise in the segmentation results and improves the segmentation accuracy,which demonstrates the advancements of our model.
文摘Remote sensing image(RSI)classifier roles a vital play in earth observation technology utilizing Remote sensing(RS)data are extremely exploited from both military and civil fields.More recently,as novel DL approaches develop,techniques for RSI classifiers with DL have attained important breakthroughs,providing a new opportunity for the research and development of RSI classifiers.This study introduces an Improved Slime Mould Optimization with a graph convolutional network for the hyperspectral remote sensing image classification(ISMOGCN-HRSC)model.The ISMOGCN-HRSC model majorly concentrates on identifying and classifying distinct kinds of RSIs.In the presented ISMOGCN-HRSC model,the synergic deep learning(SDL)model is exploited to produce feature vectors.The GCN model is utilized for image classification purposes to identify the proper class labels of the RSIs.The ISMO algorithm is used to enhance the classification efficiency of the GCN method,which is derived by integrating chaotic concepts into the SMO algorithm.The experimental assessment of the ISMOGCN-HRSC method is tested using a benchmark dataset.
文摘A method to remove stripes from remote sensing images is proposed based on statistics and a new image enhancement method.The overall processing steps for improving the quality of remote sensing images are introduced to provide a general baseline.Due to the differences in satellite sensors when producing images,subtle but inherent stripes can appear at the stitching positions between the sensors.These stitchingstripes cannot be eliminated by conventional relative radiometric calibration.The inherent stitching stripes cause difficulties in downstream tasks such as the segmentation,classification and interpretation of remote sensing images.Therefore,a method to remove the stripes based on statistics and a new image enhancement approach are proposed in this paper.First,the inconsistency in grayscales around stripes is eliminated with the statistical method.Second,the pixels within stripes are weighted and averaged based on updated pixel values to enhance the uniformity of the overall image radiation quality.Finally,the details of the images are highlighted by a new image enhancement method,which makes the whole image clearer.Comprehensive experiments are performed,and the results indicate that the proposed method outperforms the baseline approach in terms of visual quality and radiation correction accuracy.
基金supported by Yulin Science and Technology Association Youth Talent Promotion Program(Grant No.20200212).
文摘The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
文摘Based on low-altitude remote sensing images,this paper established sample set of typical river vegetation elements and proposed river vegetation extraction technical solution to adaptively extract typical vegetation elements of river basins.The main research of this paper were as follows:(1)a typical vegetation extraction sample set based on low-altitude remote sensing images was established.(2)A low-altitude remote sensing image vegetation extraction model based on the focus perception module was designed to realize the end-to-end automatic extraction of different types of vegetation areas of low-altitude remote sensing images to fully learn the spectral spatial texture information and deep semantic information of the images.(3)By comparison with the baseline method,baseline method with embedded focus perception module showed an improvement in the precision by 7.37%and mIoU by 49.49%.Through visual interpretation and quantitative calculation analysis,the typical river vegetation adaptive extraction network has effectiveness and generalization ability,consistent with the needs of practical applications of vegetation extraction.
文摘A numerical algorithm of principal component analysis (PCA) is proposed and its application in remote sensing image processing is introduced: (1) Multispectral image compression;(2) Multi-spectral image noise cancellation;(3) Information fusion of multi-spectral images and spot panchromatic images. The software experiments verify and evaluate the effectiveness and accuracy of the proposed algorithm.
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金supported by National Natural Science Foundation of China(No.61864025)2021 Longyuan Youth Innovation and Entrepreneurship Talent(Team),Young Doctoral Fund of Higher Education Institutions of Gansu Province(No.2021QB-49)+4 种基金Employment and Entrepreneurship Improvement Project of University Students of Gansu Province(No.2021-C-123)Intelligent Tunnel Supervision Robot Research Project(China Railway Scientific Research Institute(Scientific Research)(No.2020-KJ016-Z016-A2)Lanzhou Jiaotong University Youth Foundation(No.2015005)Gansu Higher Education Research Project(No.2016A-018)Gansu Dunhuang Cultural Relics Protection Research Center Open Project(No.GDW2021YB15).
文摘Road extraction based on deep learning is one of hot spots of semantic segmentation in the past decade.In this work,we proposed a framework based on codec network for automatic road extraction from remote sensing images.Firstly,a pre-trained ResNet34 was migrated to U-Net and its encoding structure was replaced to deepen the number of network layers,which reduces the error rate of road segmentation and the loss of details.Secondly,dilated convolution was used to connect the encoder and the decoder of network to expand the receptive field and retain more low-dimensional information of the image.Afterwards,the channel attention mechanism was used to select the information of the feature image obtained by up-sampling of the encoder,the weights of target features were optimized to enhance the features of target region and suppress the features of background and noise regions,and thus the feature extraction effect of the remote sensing image with complex background was optimized.Finally,an adaptive sigmoid loss function was proposed,which optimizes the imbalance between the road and the background,and makes the model reach the optimal solution.Experimental results show that compared with several semantic segmentation networks,the proposed method can greatly reduce the error rate of road segmentation and effectively improve the accuracy of road extraction from remote sensing images.