A monitoring program was developed to assess the cover of saltgrass managed for dust control on the saline dry Owens Lake. Although the original intent was to manage the vegetation as total cover that included green a...A monitoring program was developed to assess the cover of saltgrass managed for dust control on the saline dry Owens Lake. Although the original intent was to manage the vegetation as total cover that included green and senesced leaf and stem material, aged leaves that make up a large proportion of total cover were not differentiable spectrally from the background salt and lakebed. Hence, greenness-based indices were explored for detection of plant recruitment. Since all plant cover begins as green and growing, greenness indices provide a measure of all future cover whether living or senesced. The criteria for judging compliance were changed so that spatially variable vegetation cover measured as a milestone will need to be met in the future. A derivative of NDVI, NDVIx, calculated using scene statistics, proved highly accurate, to about 0.001 of this index and with an average signal to noise ratio of 64. This high level of accuracy allowed detection of small changes in vegetation growth and vigor. Performance according to the benchmark-as-par standard was determined through combined use of cumulative distribution functions and derivative maps.展开更多
This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen ...This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen as the CPU of the embedded server with a linux operation system( OS) environment. The embedded server provides multiple interfaces for supporting various application scenarios. The whole network is based on local area network and adopts the Browser / Server( B / S) model. The monitoring and control node is as a browser endpoint and the remote node with an embedded server is as a server endpoint. Users can easily acquire various sensors information through writing Internet protocol address of remote node on the computer browser. Compared with client / server( C / S) mode,B / S model needs less maintain and can be applicable to large user group. In addition,a simple network management protocol( SNMP) is used for management of devices in Internet protocol( IP) networks. The results of the demonstration experiment show that the proposed system gives good support to manage the network from different user terminals and allows the users to better interact with the ambient environment.展开更多
In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Thi...In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Things technology and drawing on the successful experience of air automatic monitoring stations and surface water automatic monitoring stations in management,and developed a dynamic management and control system for automatic monitoring equipment of pollution sources to improve and strengthen the quality audit of automatic monitoring data,further improve the quality of automatic monitoring data and better provide a basis for environmental management and decision making.The system realizes the simultaneous monitoring of monitoring data,running state and parameters of the automatic monitoring equipment,eliminates the phenomenon of falsification by modifying equipment parameters,and judges the validity of the collected data by acquiring the working state of the equipment remotely and randomly.After the actual operation test of the Department of Ecological Environment of Shandong Province,the system is proved to have the characteristics of practicality,real time and high efficiency,and be able to make up for low frequency and narrow coverage of manual inspection,with good application prospect in the field of environment and pollution source monitoring.展开更多
Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitorin...Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described.展开更多
The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib...The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.展开更多
The wide diffusion of healthcare monitoring systems allows continuous patient to be remotely monitored and diagnosed by doctors. The problem of congestion, namely due to the uncontrolled increase of traffic with respe...The wide diffusion of healthcare monitoring systems allows continuous patient to be remotely monitored and diagnosed by doctors. The problem of congestion, namely due to the uncontrolled increase of traffic with respect to the network capacity, is one of the most common phenomena affecting the reliability of transmission of information in any network. The aim of the paper is to build a realistic simulation environment for healthcare system including some of the main vital signs model, wireless sensor and mesh network protocols implementation. The simulator environment is an efficient mean to analyze and evaluate in a realistic scenario the healthcare system performance in terms of reliability and efficiency.展开更多
Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from ...Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from the aquaponics plant itself with its huge amount of smart sensors for water quality, fish and plant growth, system state etc. and from the stakeholder, e.g., farmers, retailers and end consumers. The intelligent management of aquaponics is only possible if this data and information are managed and used in an intelligent way. Therefore, the main focus of this paper is to introduce an intelligent information management (IIM) for aquaponics. It will be shown how the information can be used to create services such as predictive analytics, system optimization and anomaly detection to improve the aquaponics system. The results show that the system enabled full traceability and transparency in the aquaponics processes (customers can follow what is going on at the farm), reduced water and energy use and increased revenue through early fault detection. In this, paper the information management approach will be introduced and the key benefits of the digitized aquaponics system will be given.展开更多
文摘A monitoring program was developed to assess the cover of saltgrass managed for dust control on the saline dry Owens Lake. Although the original intent was to manage the vegetation as total cover that included green and senesced leaf and stem material, aged leaves that make up a large proportion of total cover were not differentiable spectrally from the background salt and lakebed. Hence, greenness-based indices were explored for detection of plant recruitment. Since all plant cover begins as green and growing, greenness indices provide a measure of all future cover whether living or senesced. The criteria for judging compliance were changed so that spatially variable vegetation cover measured as a milestone will need to be met in the future. A derivative of NDVI, NDVIx, calculated using scene statistics, proved highly accurate, to about 0.001 of this index and with an average signal to noise ratio of 64. This high level of accuracy allowed detection of small changes in vegetation growth and vigor. Performance according to the benchmark-as-par standard was determined through combined use of cumulative distribution functions and derivative maps.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2012AA02A604)
文摘This paper presents a multi-interface embedded server architecture for remote real-time monitoring system and distributed monitoring applications. In the scheme,an embedded microprocessor( LPC3250 from NXP) is chosen as the CPU of the embedded server with a linux operation system( OS) environment. The embedded server provides multiple interfaces for supporting various application scenarios. The whole network is based on local area network and adopts the Browser / Server( B / S) model. The monitoring and control node is as a browser endpoint and the remote node with an embedded server is as a server endpoint. Users can easily acquire various sensors information through writing Internet protocol address of remote node on the computer browser. Compared with client / server( C / S) mode,B / S model needs less maintain and can be applicable to large user group. In addition,a simple network management protocol( SNMP) is used for management of devices in Internet protocol( IP) networks. The results of the demonstration experiment show that the proposed system gives good support to manage the network from different user terminals and allows the users to better interact with the ambient environment.
文摘In order to improve the quality of automatic monitoring data of pollution sources and apply the automatic monitoring data to verify the environmental tax,Shandong Province took the lead in adopting the Internet of Things technology and drawing on the successful experience of air automatic monitoring stations and surface water automatic monitoring stations in management,and developed a dynamic management and control system for automatic monitoring equipment of pollution sources to improve and strengthen the quality audit of automatic monitoring data,further improve the quality of automatic monitoring data and better provide a basis for environmental management and decision making.The system realizes the simultaneous monitoring of monitoring data,running state and parameters of the automatic monitoring equipment,eliminates the phenomenon of falsification by modifying equipment parameters,and judges the validity of the collected data by acquiring the working state of the equipment remotely and randomly.After the actual operation test of the Department of Ecological Environment of Shandong Province,the system is proved to have the characteristics of practicality,real time and high efficiency,and be able to make up for low frequency and narrow coverage of manual inspection,with good application prospect in the field of environment and pollution source monitoring.
基金supported by the National Natural Science Foundation of China ( No. 50335030, 50175087 and50305012).
文摘Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described.
文摘The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.
文摘The wide diffusion of healthcare monitoring systems allows continuous patient to be remotely monitored and diagnosed by doctors. The problem of congestion, namely due to the uncontrolled increase of traffic with respect to the network capacity, is one of the most common phenomena affecting the reliability of transmission of information in any network. The aim of the paper is to build a realistic simulation environment for healthcare system including some of the main vital signs model, wireless sensor and mesh network protocols implementation. The simulator environment is an efficient mean to analyze and evaluate in a realistic scenario the healthcare system performance in terms of reliability and efficiency.
文摘Aquaponics are feedback and two player systems, in which fish and crops mutually benefit from one another and, therefore require close monitoring, management and control. Vast amount of data and information flow from the aquaponics plant itself with its huge amount of smart sensors for water quality, fish and plant growth, system state etc. and from the stakeholder, e.g., farmers, retailers and end consumers. The intelligent management of aquaponics is only possible if this data and information are managed and used in an intelligent way. Therefore, the main focus of this paper is to introduce an intelligent information management (IIM) for aquaponics. It will be shown how the information can be used to create services such as predictive analytics, system optimization and anomaly detection to improve the aquaponics system. The results show that the system enabled full traceability and transparency in the aquaponics processes (customers can follow what is going on at the farm), reduced water and energy use and increased revenue through early fault detection. In this, paper the information management approach will be introduced and the key benefits of the digitized aquaponics system will be given.