Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-l...Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.展开更多
The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an import...The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.展开更多
Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and...Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention.Glacier variations result from climate change,so they can serve as an indicator of climate change.Considering the climatic differences in different elevation ranges,it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone.In this study,we selected a typical arid inland river basin(Sugan Lake Basin)in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change.The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper(TM),Enhanced TM+(ETM+)and Operational Land Imager(OLI)images.We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin,and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l.by the linear regression method and correlation analysis.In addition,based on the linear regression relationship established between glacier area and air temperature in each elevation zone,we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100.The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of–1.61 km^2/a(–0.5%/a),and the rising temperature is the decisive factor dominating glacial retreat;there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016.The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature.Due to the influence of climate and topographic conditions,the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones.The trend in glacier shrinkage will continue because air temperature will continue to increase in the future,and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area.Quantitative glacier research can more accurately reflect the response of glacier variations to climate change,and the regression relationship can be used to predict the areas of glaciers under future climate scenarios.These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world.展开更多
Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in...Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990-2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China:the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains;the Yinsugaiti Glacier sub-region in the Karakorum Mountains;and the Youyi Peak sub-region in the Altay Mountains.The standardized snow cover index(NDSI)and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015.Glacial areas in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions in the period of 1990-2015 decreased by 57.7,369.1,369.1,and 170.4 km^(2),respectively.Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin.Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect,while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect.Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent.However,glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation.On a seasonal time scale,glacier area changes in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season;on an annual time scale,the correlation coefficient between glacier area and annual average temperature was-0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region.The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming.展开更多
Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on...Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.展开更多
基金Supported by Guizhou Provincial Key Technology R&D Program ([2023]General 211)Guizhou Science and Technology Innovation Base Construction Project (Qian Ke He Zhong Yin Di[2023]005).
文摘Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.
文摘The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits.
基金This study was financially supported by the National Key Research and Development Program of China(2016YFC0402405)the National Natural Science Foundation of China(91647109,51179203,51579248,51679257,51779270).
文摘Glaciers are a critical freshwater resource of river recharge in arid areas around the world.In recent decades,glaciers have shown evidence of retreat due to climate change,and the accelerated ablation of glaciers and associated impacts on water resources have received widespread attention.Glacier variations result from climate change,so they can serve as an indicator of climate change.Considering the climatic differences in different elevation ranges,it is worthwhile to explore whether different responses exist between glacier area and air temperature in each elevation zone.In this study,we selected a typical arid inland river basin(Sugan Lake Basin)in the western Qilian Mountains of Northwest China to analyze the glacier variations and their response to climate change.The glacier area data from 1989 to 2016 were delineated using Landsat Thematic Mapper(TM),Enhanced TM+(ETM+)and Operational Land Imager(OLI)images.We compared the relationships between glacier area and air temperature at seven meteorological stations in the glacier-covered areas and in the Sugan Lake Basin,and further analyzed the relationship between glacier area and mean air temperature of the glacier surfaces in July–August in the elevation range of 4700–5500 m a.s.l.by the linear regression method and correlation analysis.In addition,based on the linear regression relationship established between glacier area and air temperature in each elevation zone,we predicted glacier areas under future climate scenarios during the periods of 2046–2065 and 2081–2100.The results indicate that the glaciers experienced a remarkable shrinkage from 1989 to 2016 with a shrinkage rate of–1.61 km^2/a(–0.5%/a),and the rising temperature is the decisive factor dominating glacial retreat;there is a significant negative linear correlation between glacier area and mean air temperature of the glacier surfaces in July–August in each elevation zone from 1989 to 2016.The variations in glaciers are far less sensitive to changes in precipitation than to changes in air temperature.Due to the influence of climate and topographic conditions,the distribution of glacier area and the rate of glacier ablation first increased and then decreased in different elevation zones.The trend in glacier shrinkage will continue because air temperature will continue to increase in the future,and the result of glacier retreat in each elevation zone will be slightly slower than that in the entire study area.Quantitative glacier research can more accurately reflect the response of glacier variations to climate change,and the regression relationship can be used to predict the areas of glaciers under future climate scenarios.These conclusions can offer effective references for assessing glacier variations and their response to climate change in arid inland river basins in Northwest China as well as other similar regions in the world.
基金sponsored by the National Key Research&Development Program of China(2017YFB0504204)the K.C.Wong Education Foundation(GJTD-2020-14)+1 种基金the International Collaboration Project of the Chinese Academy of Sciences(131965KYSB20200029)the New Water Resources Strategic Research Project in Southern Xinjiang Uygur Autonomous Region,China(403-1005-YBN-FT6I-8)。
文摘Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990-2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China:the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains;the Yinsugaiti Glacier sub-region in the Karakorum Mountains;and the Youyi Peak sub-region in the Altay Mountains.The standardized snow cover index(NDSI)and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015.Glacial areas in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions in the period of 1990-2015 decreased by 57.7,369.1,369.1,and 170.4 km^(2),respectively.Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin.Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect,while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect.Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent.However,glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation.On a seasonal time scale,glacier area changes in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season;on an annual time scale,the correlation coefficient between glacier area and annual average temperature was-0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region.The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming.
基金This work was supported by the project of China Geology Survey(DD20190315)Innovation Capability Support Program of Shaanxi(2019TD-040)+1 种基金“Integration of Groundwater Resources Assessment Results in Key Areas of Northwest China”programKey Laboratory of Groundwater and Ecology in Arid and Semi-arid Areas of China Geological Survey.
文摘Glaciers are crucial water resources for arid inland rivers in Northwest China.In recent decades,glaciers are largely experiencing shrinkage under the climate-warming scenario,thereby exerting tremendous influences on regional water resources.The primary role of understudying watershed scale glacier changes under changing climatic conditions is to ensure sustainable utilization of regional water resources,to prevent and mitigate glacier-related disasters.This study maps the current(2020)distribution of glacier boundaries across the Kaidu-Kongque river basin,south slope of Tianshan Mountains,and monitors the spatial evolution of glaciers over five time periods from 2000-2020 through thresholded band ratios approach,using 25 Landsat images at 30 m resolution.In addition,this study attempts to understand the role of climate characteristics for variable response of glacier area.The results show that the total area of glaciers was 398.21 km^(2)in 2020.The glaciers retreated by about 1.17 km^(2)/a(0.26%/a)from 2000 to 2020.The glaciers were reducing at a significantly rapid rate between 2000 and 2005,a slow rate from 2005 to 2015,and an accelerated rate during 2015-2020.The meteorological data shows slight increasing trends of mean annual temperature(0.02℃/a)and annual precipitation(2.07 mm/a).The correlation analysis demonstrates that the role of temperature presents more significant correlation with glacier recession than precipitation.There is a temporal hysteresis in the response of glacier change to climate change.Increasing trend of temperature in summer proves to be the driving force behind the Kaidu-Kongque basin glacier recession during the recent 20 years.