Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dy...Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.展开更多
Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Theref...Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.展开更多
The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertificat...The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.展开更多
Hamtah and Chhota Shigri are two nearby,well monitored glaciers of western Himalaya,lying in the same climatic zone and driven by the same climatic conditions.In this study,topographical characteristics of both the gl...Hamtah and Chhota Shigri are two nearby,well monitored glaciers of western Himalaya,lying in the same climatic zone and driven by the same climatic conditions.In this study,topographical characteristics of both the glacier have been explored to understand the role of topography in controlling the glacier response.Further,their topographical characteristics and possible response towards climatic variations have been compared with each other and also with that of the other glaciers in the basin to find out the suitability of these two glaciers to be considered as representative of the region.Multi sensor and multi temporal remote sensing data have been used to carry out to fulfill the objectives.It is found that being in the same climatic zone,the mean accumulation area ratio of Chhota Shigri is 54%and Hamtah is 11%between 1980 and 2014.In comparison to Hamtah,Chhota Shigri glacier has a small upslope area,low compactness ratio indicating the ability of the glacier to receive direct precipitation and solar radiation.The analysis revealed that the Chhota Shigri glacier has a closer resemblance with the other glaciers in the region than Hamtah glacier.Also,the topographical settings of Chhota Shigri glacier are suitable for recording and reflecting year-to-year climatic variations.展开更多
Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography an...Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffu- sion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially in- creased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion co- efficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3-24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis.展开更多
Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and ...Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.展开更多
A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surf...A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surface temperature(SST) data. The Regional Ocean Modeling System(ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo fl oat profi les and MODIS SST, it is confi rmed that the ROMS reproduces the EHIU well. The cooler-water core(CWC) distinguished by waters(27) 27.5℃ in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward fl ow and the bathymetry slope played a signifi cant role in the formation of CWC. Numerical experiments indicated that the westward fl ow in the Qiongzhou Strait was the result of tidal rectifi cation over variable topography(Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2–0.4℃. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefi t the development of the CWC.展开更多
Long-range atmospheric transport(LRAT)plays a crucial role in the occurrence of persis-tent organic pollutants(POPs)in remote regions.When studying the LRAT of POPs on the Tibetan Plateau,westerly-controlled regions h...Long-range atmospheric transport(LRAT)plays a crucial role in the occurrence of persis-tent organic pollutants(POPs)in remote regions.When studying the LRAT of POPs on the Tibetan Plateau,westerly-controlled regions have received insufficient attention compared with regions influenced by the Indian monsoon or air flow from East Asia.We investigated the residual levels of POPs in soils from the eastern Pamirs and used air backward trajectory analysis to elucidate the influence of potential source regions via LRAT.Organochlorine pes-ticides(OCPs,mainly comprising DDTs,HCHs,and HCB),polychlorinated biphenyls(PCBs,mainly comprising penta-and hexa-CBs),and polycyclic aromatic hydrocarbons(PAHs,mainly comprising three-and four-ring)were detected at low concentrations of 40-1000,<MDL-88,and 2100-34,000 pg/g,respectively.We elucidated three major geographical dis-tribution patterns of POPs,which were influenced by(1)the distribution of total organic carbon and black carbon in soil,(2)historical use of pesticides in the Tarim Basin,and(3)continuous emissions.Central Asia and the Tarim Basin were major potential source regions of POPs reaching the eastern Pamirs via LRAT.Historical use of technical HCH or lindane and technical DDT in potential source regions may contribute to the accumulation of HCHs and DDTs in the eastern Pamirs,respectively.Local sources seem to play a more important role in the occurrence of PAHs in the study area.By being under the control of less contaminated westerly air flow,the eastern Pamirs are more pristine than the core of the Tibetan Plateau where the Indian and East Asia monsoons deliver contaminants from highly industrialized areas in East China and India.展开更多
Wheat scab(WS,Fusarium head blight),one of the most severe diseases of winter wheat in Yangtze-Huaihe river region,whose monitoring and timely forecasting at large scale would help to optimize pesticide spraying and a...Wheat scab(WS,Fusarium head blight),one of the most severe diseases of winter wheat in Yangtze-Huaihe river region,whose monitoring and timely forecasting at large scale would help to optimize pesticide spraying and achieve the purpose of reducing yield loss.In the present study,remote sensing monitoring on WS was conducted in 4 counties in Yangtze-Huaihe river region.Sensitive factors of WS were selected to establish the remote sensing estimation model of winter wheat scab index(WSI)based on interactions between spectral information and meteorological factors.The results showed that:1)Correlations between the daily average temperature(DAT)and daily average relative humidity(DAH)at different time scales and WSI were significant.2)There were positive linear correlations between winter wheat biomass,leaf area index(LAI),leaf chlorophyll content(LCC)and WSI.3)NDVI(normalized difference vegetation index),RVI(ratio vegetation index)and DVI(difference vegetation index)which had a good correlation with LAI,biomass and LCC,respectively,and could be used to replace them in modeling.4)The estimated values of the model were consistent with the measured values(RMSE=5.3%,estimation accuracy=90.46%).Estimation results showed that the model could efficiently estimate WS in Yangtze-Huaihe river region.展开更多
基金Under the auspices of National Program on Key Basic Research Project(No.2013CB430401)
文摘Aquaculture ponds are one of the fastest-growing land use types in valuable and fertile coastal areas and have caused serious environmental problems. Quantitative assessment of the extent, spatial distribution, and dynamics of aquaculture ponds is of utmost importance for sustainable economic development and scientific management of land and water resources in the coastal area. An object-oriented classification approach was applied to Landsat images acquired over three decades to investigate the long-term change of aquaculture ponds in the coastal region of the Yellow River Delta. The results indicated that the aquaculture ponds in the study area undergone a sharp expansion from 40.38 km^2 in 1983 to 1406.89 km^2 in 2015, and the fast expansion occurred during the period of 2010–2015 and 1990–2000. Natural wetlands, especially mudflat, and cropland were main land use types contributing to the increase of aquaculture ponds. The patches of aquaculture ponds were consequently prevalence in the north of the Yellow River Estuary and landscape metrics indicated an increase of the aquaculture ponds of the study area in the quantity and complexity. The expansion of aquaculture ponds inevitably had negative effects on the coastal environment, including loss of natural wetlands, water pollution and land subsidence, etc. The results from this study provide baseline data and valuable information for efficiently planning and managing aquaculture practices and for effectively implementing adequate regulations and protection measures.
基金funded by China Geological Survey (grant no.1212011120899)the Department of Geology & Mining, China National Nuclear Corporation (grant no.201498)
文摘Hyperspectral remote sensing is now a frontier of the remote sensing technology. Airborne hyperspectral remote sensing data have hundreds of narrow bands to obtain complete and continuous ground-object spectra. Therefore, they can be effectively used to identify these grotmd objects which are difficult to discriminate by using wide-band data, and show much promise in geological survey. At the height of 1500 m, have 36 bands in visible to the CASI hyperspectral data near-infrared spectral range, with a spectral resolution of 19 nm and a space resolution of 0.9 m. The SASI data have 101 bands in the shortwave infrared spectral range, with a spectral resolution of 15 nm and a space resolution of 2.25 m. In 2010, China Geological Survey deployed an airborne CASI/SASI hyperspectral measurement project, and selected the Liuyuan and Fangshankou areas in the Beishan metallogenic belt of Gansu Province, and the Nachitai area of East Kunlun metallogenic belt in Qinghai Province to conduct geological survey. The work period of this project was three years.
基金supported by grants from the National Nature Science Foundation of China(31025007)the Knowledge Innovation Program of the Chinese Academy of Sciences(KZCX1-YW-08-02)
文摘The Horqin Sandy Land(HSL), the largest sandy land in the semi-arid agro-pastoral ecotone of Northeast China, has been subject to desertification during the past century. In response, and to control the desertification,government implemented the Three-North Shelter/Protective Forest Program, world's largest ecological reforestation/afforestation restoration program. The program began in1978 and will continue for 75 years until 2050. Understanding the dynamics of desertification and its driving forces is a precondition for controlling desertification.However, there is little evidence to directly link causal effects with desertification process(i.e., on the changing area of sandy land) because desertification is a complex process,that can be affected by vegetation(including vegetation cover and extent of shelter forests) and water factors such as precipitation, surface soil moisture, and evapotranspiration.The objectives of this study were to identify how influencing factors, especially shelter forests, affected desertification in HSL over a recent decade. We used Landsat TM imagery analysis and path analysis to identify the effects of spatiotemporal changes in water and vegetation parameters during2000–2010. Desertification was controlled during the study period, as indicated by a decrease in desert area at a rate of163.3 km2year-1and an increase in the area with reduced intensity or extent of desertification. Total vegetation cover in HSL increased by 10.6 % during the study period and this factor exerted the greatest direct and indirect effects on slowing desertification. The contribution of total vegetation cover to controlling desertification increased with the intensity of desertification. On slightly and extremely severe desertified areas, vegetation cover contributed 5 and 42 % of the desertification reduction, respectively. There were significant correlations between total vegetation cover and water conditions(i.e., evapotranspiration and precipitation)and the area of shelter forests(P / 0.0001), in which water conditions and the existence of shelter forests contributed49.7 and 12.8 % to total vegetation cover, respectively. The area of shelter forests increased sharply due to program efforts, but only shrub forests had significant direct effects on reducing the area of desertification categorized as slightly desertified. The reason for the lack of direct effect of increased arbor forests(accounting for 95.3 % of the total increase in shelter forests) on reducing desertification might be that the selected arbor species were not suited to water conditions(low precipitation, high evapotranspiration) prevailing at HSL. The establishment of shelter forests aided control of desertification in the HSL region, but the effect was less than expected. Effective control of desertification in the HSL region or other similar sandy areas will require greater improvements in vegetation cover. In particular,shrub species should be selected for plantation with reference to their potential to survive and reproduce in the harsh climatic and weather conditions typical of desertified areas.
文摘Hamtah and Chhota Shigri are two nearby,well monitored glaciers of western Himalaya,lying in the same climatic zone and driven by the same climatic conditions.In this study,topographical characteristics of both the glacier have been explored to understand the role of topography in controlling the glacier response.Further,their topographical characteristics and possible response towards climatic variations have been compared with each other and also with that of the other glaciers in the basin to find out the suitability of these two glaciers to be considered as representative of the region.Multi sensor and multi temporal remote sensing data have been used to carry out to fulfill the objectives.It is found that being in the same climatic zone,the mean accumulation area ratio of Chhota Shigri is 54%and Hamtah is 11%between 1980 and 2014.In comparison to Hamtah,Chhota Shigri glacier has a small upslope area,low compactness ratio indicating the ability of the glacier to receive direct precipitation and solar radiation.The analysis revealed that the Chhota Shigri glacier has a closer resemblance with the other glaciers in the region than Hamtah glacier.Also,the topographical settings of Chhota Shigri glacier are suitable for recording and reflecting year-to-year climatic variations.
基金supported by Zhejiang Province Science and Technology Plan Project in China,No.2012C37029Public Welfare Technology Application Research Plan Project of Zhejiang Province in China,No.2011C23021
文摘Supratentorial cerebral infarction can cause functional inhibition of remote regions such as the cerebellum, which may be relevant to diaschisis. This phenomenon is often analyzed using positron emission tomography and single photon emission CT. However, these methods are expensive and radioactive. Thus, the present study quantified the changes of infarction core and remote regions after unilateral middle cerebral artery occlusion using apparent diffusion coefficient values. Diffu- sion-weighted imaging showed that the area of infarction core gradually increased to involve the cerebral cortex with increasing infarction time. Diffusion weighted imaging signals were initially in- creased and then stabilized by 24 hours. With increasing infarction time, the apparent diffusion co- efficient value in the infarction core and remote bilateral cerebellum both gradually decreased, and then slightly increased 3-24 hours after infarction. Apparent diffusion coefficient values at remote regions (cerebellum) varied along with the change of supratentorial infarction core, suggesting that the phenomenon of diaschisis existed at the remote regions. Thus, apparent diffusion coefficient values and diffusion weighted imaging can be used to detect early diaschisis.
基金akistan Space and Upper Atmospheric Research Commission(SUPARCO),for the provision of SPOT satellite imagesnational center of excellence in Geology(NCEG)+1 种基金University of Peshawar and Department of ForestryShaheed Benazir Bhutto University,Sheringal
文摘Anthropogenic activities and natural processes are continuously altering the mountainous environment through deforestation, forest degradation and other land-use changes. It is highly important to assess, monitor and forecast forest cover and other land-use changes for the protection and conservation of mountainous environment. The present study deals with the assessment of forest cover and other land-use changes in the mountain ranges of Dir Kohistan in northern Pakistan, using high resolution multi-temporal SPOT-5 satellite images. The SPOT-5 satellite images of years 2004, 2007, 2010 and 2013 were acquired and classified into land-cover units. In addition, forest cover and land-use change detection map was developed using the classified maps of 2004 and 2013. The classified maps were verified through random field samples and Google Earth imagery(Quick birds and SPOT-5). The results showed that during the period 2004 to 2013 the area of forest land decreased by 6.4%, however, area of range land and agriculture land have increased by 22.1% and 2.9%, respectively. Similarly, barren land increased by 1.1%, whereas, area of snow cover/glacier is significantly decreased by 21.3%. The findings from the study will be useful for forestry and landscape planning and can be utilized by the local, provincial and national forest departments; and REDD+ policy makers in Pakistan.
基金Supported by the National Natural Science Foundation of China(No.41476002)the Shandong Province Natural Science Foundation(No.ZR2014DQ013)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1409)
文摘A synoptic-scale upwelling event that developed off the east coast of the Hainan Island(EHIU) in the summer of 2010 is defi ned well via processing the Moderate Resolution Imaging Spectroradiometer(MODIS) sea surface temperature(SST) data. The Regional Ocean Modeling System(ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo fl oat profi les and MODIS SST, it is confi rmed that the ROMS reproduces the EHIU well. The cooler-water core(CWC) distinguished by waters(27) 27.5℃ in the EHIU, which occurred in the east Qiongzhou Strait mouth area and was bounded by a high temperature gradient, was the focus of this paper. Vertical structure of the CWC suggests that interaction between the westward fl ow and the bathymetry slope played a signifi cant role in the formation of CWC. Numerical experiments indicated that the westward fl ow in the Qiongzhou Strait was the result of tidal rectifi cation over variable topography(Shi et al., 2002), thus tides played a critical role on the development of the CWC. The negative wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2–0.4℃. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefi t the development of the CWC.
基金supported by the National Natural Science Foundation of China (Nos. 41473095, 41503112, 41773124, and 41907327)the Research Fund of Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control (No.Guikeneng 1701K008)+1 种基金supports from the China Scholarship Council (No. 201806410038)the Fundamental Research Funds for National Universities,China University of Geosciences (Wuhan)
文摘Long-range atmospheric transport(LRAT)plays a crucial role in the occurrence of persis-tent organic pollutants(POPs)in remote regions.When studying the LRAT of POPs on the Tibetan Plateau,westerly-controlled regions have received insufficient attention compared with regions influenced by the Indian monsoon or air flow from East Asia.We investigated the residual levels of POPs in soils from the eastern Pamirs and used air backward trajectory analysis to elucidate the influence of potential source regions via LRAT.Organochlorine pes-ticides(OCPs,mainly comprising DDTs,HCHs,and HCB),polychlorinated biphenyls(PCBs,mainly comprising penta-and hexa-CBs),and polycyclic aromatic hydrocarbons(PAHs,mainly comprising three-and four-ring)were detected at low concentrations of 40-1000,<MDL-88,and 2100-34,000 pg/g,respectively.We elucidated three major geographical dis-tribution patterns of POPs,which were influenced by(1)the distribution of total organic carbon and black carbon in soil,(2)historical use of pesticides in the Tarim Basin,and(3)continuous emissions.Central Asia and the Tarim Basin were major potential source regions of POPs reaching the eastern Pamirs via LRAT.Historical use of technical HCH or lindane and technical DDT in potential source regions may contribute to the accumulation of HCHs and DDTs in the eastern Pamirs,respectively.Local sources seem to play a more important role in the occurrence of PAHs in the study area.By being under the control of less contaminated westerly air flow,the eastern Pamirs are more pristine than the core of the Tibetan Plateau where the Indian and East Asia monsoons deliver contaminants from highly industrialized areas in East China and India.
基金supported by the National Natural Science Foundation of China(No.41571323)Key Research&Development Plan of Jiangsu Province(BE2016730)+1 种基金Open Research Fund of Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(No.2016LDE007)the Fund of Jiangsu Academy of Agriculture Sciences(6111647).
文摘Wheat scab(WS,Fusarium head blight),one of the most severe diseases of winter wheat in Yangtze-Huaihe river region,whose monitoring and timely forecasting at large scale would help to optimize pesticide spraying and achieve the purpose of reducing yield loss.In the present study,remote sensing monitoring on WS was conducted in 4 counties in Yangtze-Huaihe river region.Sensitive factors of WS were selected to establish the remote sensing estimation model of winter wheat scab index(WSI)based on interactions between spectral information and meteorological factors.The results showed that:1)Correlations between the daily average temperature(DAT)and daily average relative humidity(DAH)at different time scales and WSI were significant.2)There were positive linear correlations between winter wheat biomass,leaf area index(LAI),leaf chlorophyll content(LCC)and WSI.3)NDVI(normalized difference vegetation index),RVI(ratio vegetation index)and DVI(difference vegetation index)which had a good correlation with LAI,biomass and LCC,respectively,and could be used to replace them in modeling.4)The estimated values of the model were consistent with the measured values(RMSE=5.3%,estimation accuracy=90.46%).Estimation results showed that the model could efficiently estimate WS in Yangtze-Huaihe river region.