Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disaster...Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of f lood inundation.Over the past 20 years,the field of remote sensing for f loods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of f lood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“f lood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for f loods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and f lood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid f lood hazard extraction and f lood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance f lood identification accuracy.Recent studies focus on spatial and temporal changes in f looding,risk identification,and early warning for climate change-related f looding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term f lood disaster sequences to better understand their mechanisms.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from ...The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.展开更多
In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the re...In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the realm of remote sensing images(RSIs),existing KD research studies are not only scarce but also lack competitiveness.This issue significantly impedes the deployment of the notable advantages of ViTs and CNNs.To tackle this,the authors introduce a novel hybrid‐model KD approach named HMKD‐Net,which comprises a CNN‐ViT ensemble teacher and a CNN student.Contrary to popular opinion,the authors posit that the sparsity in RSI data distribution limits the effectiveness and efficiency of hybrid‐model knowledge transfer.As a solution,a simple yet innovative method to handle variances during the KD phase is suggested,leading to substantial enhancements in the effectiveness and efficiency of hybrid knowledge transfer.The authors assessed the performance of HMKD‐Net on three RSI datasets.The findings indicate that HMKD‐Net significantly outperforms other cuttingedge methods while maintaining a significantly smaller size.Specifically,HMKD‐Net exceeds other KD‐based methods with a maximum accuracy improvement of 22.8%across various datasets.As ablation experiments indicated,HMKD‐Net has cut down on time expenses by about 80%in the KD process.This research study validates that the hybrid‐model KD technique can be more effective and efficient if the data distribution sparsity in RSIs is well handled.展开更多
Due to global climate change,Dendrolimus pests and diseases seriously threaten the protec-tion of forestry plants and the safety of crops all over the world.This paper aims to discuss the research results and frontier...Due to global climate change,Dendrolimus pests and diseases seriously threaten the protec-tion of forestry plants and the safety of crops all over the world.This paper aims to discuss the research results and frontier progress of Dendrolimus disasters based on remote sensing monitoring,trying to find the occurrence characteristics of pests.In this paper,bibliometric methods and CiteSpace knowledge graphs were used to analyze the publication trend,highly cited documents,key research institutions,and high-frequency keywords of the extracted documents in the Web of Science(WOS)database.The following conclusions are drawn:(1)The amount of research in WOS is on the rise,but it has declined in recent years.The countries with strong influence in national cooperation are mainly the United States and China.(2)The United States Department of Agriculture-Agricultural Research Service(USDA ARS)and the Chinese Academy of Sciences have published a lot.This paper reviewed the research progress of high-frequency institutions.(3)The key research topics focus on remote sensing,agriculture,and environmental sciences.Besides,the research hotspots include remote sensing monitoring,climate change,spectral reflectance,vegetation index,and precision agriculture.Finally,we put forward the current challenges and development trends of remote sensing pest monitoring.This paper can provide a reference for the research on remote sensing monitoring of Dendrolimus disasters in the future.展开更多
针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max poolin...针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。展开更多
文摘Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of f lood inundation.Over the past 20 years,the field of remote sensing for f loods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of f lood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“f lood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for f loods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and f lood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid f lood hazard extraction and f lood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance f lood identification accuracy.Recent studies focus on spatial and temporal changes in f looding,risk identification,and early warning for climate change-related f looding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term f lood disaster sequences to better understand their mechanisms.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
基金supported by Yulin Science and Technology Association Youth Talent Promotion Program(Grant No.20200212).
文摘The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However,the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem ofmoving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis,a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.
基金Hunan University of Arts and Science,Grant/Award Numbers:JGYB2302Geography Subject[2022]351。
文摘In various fields,knowledge distillation(KD)techniques that combine vision transformers(ViTs)and convolutional neural networks(CNNs)as a hybrid teacher have shown remarkable results in classification.However,in the realm of remote sensing images(RSIs),existing KD research studies are not only scarce but also lack competitiveness.This issue significantly impedes the deployment of the notable advantages of ViTs and CNNs.To tackle this,the authors introduce a novel hybrid‐model KD approach named HMKD‐Net,which comprises a CNN‐ViT ensemble teacher and a CNN student.Contrary to popular opinion,the authors posit that the sparsity in RSI data distribution limits the effectiveness and efficiency of hybrid‐model knowledge transfer.As a solution,a simple yet innovative method to handle variances during the KD phase is suggested,leading to substantial enhancements in the effectiveness and efficiency of hybrid knowledge transfer.The authors assessed the performance of HMKD‐Net on three RSI datasets.The findings indicate that HMKD‐Net significantly outperforms other cuttingedge methods while maintaining a significantly smaller size.Specifically,HMKD‐Net exceeds other KD‐based methods with a maximum accuracy improvement of 22.8%across various datasets.As ablation experiments indicated,HMKD‐Net has cut down on time expenses by about 80%in the KD process.This research study validates that the hybrid‐model KD technique can be more effective and efficient if the data distribution sparsity in RSIs is well handled.
基金Supported by projects of National Natural Science Foundation of China(Nos.42171407,42077242)Natural Science Foundation of Jilin Province(No.20210101098JC)+1 种基金Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation,MNR(No.KF-2020-05-024)Scientific Research Project of the 13th Five-year Education Department Plan of Jilin Province(No.JJKH20200999KJ).
文摘Due to global climate change,Dendrolimus pests and diseases seriously threaten the protec-tion of forestry plants and the safety of crops all over the world.This paper aims to discuss the research results and frontier progress of Dendrolimus disasters based on remote sensing monitoring,trying to find the occurrence characteristics of pests.In this paper,bibliometric methods and CiteSpace knowledge graphs were used to analyze the publication trend,highly cited documents,key research institutions,and high-frequency keywords of the extracted documents in the Web of Science(WOS)database.The following conclusions are drawn:(1)The amount of research in WOS is on the rise,but it has declined in recent years.The countries with strong influence in national cooperation are mainly the United States and China.(2)The United States Department of Agriculture-Agricultural Research Service(USDA ARS)and the Chinese Academy of Sciences have published a lot.This paper reviewed the research progress of high-frequency institutions.(3)The key research topics focus on remote sensing,agriculture,and environmental sciences.Besides,the research hotspots include remote sensing monitoring,climate change,spectral reflectance,vegetation index,and precision agriculture.Finally,we put forward the current challenges and development trends of remote sensing pest monitoring.This paper can provide a reference for the research on remote sensing monitoring of Dendrolimus disasters in the future.
文摘针对遥感图像中小目标数量众多且背景复杂所导致的识别精度低的问题,提出了一种改进的遥感图像小目标检测方法。该方法基于改进的YOLOv7网络模型,将双级路由注意力机制加入至下采样阶段以构建针对小目标的特征提取模块MP-ATT(max pooling-attention),使得模型更加关注小目标的特征,提高小目标检测精度。为了加强对小目标的细节感知能力,使用DCNv3(deformable convolution network v3)替换骨干网络中的二维卷积,以此构建新的层聚合模块ELAN-D。为网络设计新的小目标检测层以获取更精细的特征信息,从而提升模型的鲁棒性。同时使用MPDIoU(minimum point distance based IoU)替换原模型中的CIoU来优化损失函数,以适应遥感图像的尺度变化。实验表明,所提出的方法在DOTA-v1.0数据集上取得了良好效果,准确率、召回率和平均准确率(mean average precision,mAP)相比原模型分别提升了0.4、4.0、2.3个百分点,证明了该方法能够有效提升遥感图像中小目标的检测效果。